BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34845407)

  • 1. High-Intensity Interval Training Improves Physical Function, Prevents Muscle Loss, and Modulates Macrophage-Mediated Inflammation in Skeletal Muscle of Cerebral Ischemic Mice.
    Luo L; Liu M; Xie H; Fan Y; Zhang J; Liu L; Li Y; Zhang Q; Wu J; Jiang C; Wu Y
    Mediators Inflamm; 2021; 2021():1849428. PubMed ID: 34845407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis.
    Andonian BJ; Johannemann A; Hubal MJ; Pober DM; Koss A; Kraus WE; Bartlett DB; Huffman KM
    Arthritis Res Ther; 2021 Jul; 23(1):187. PubMed ID: 34246305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model.
    Li FH; Sun L; Zhu M; Li T; Gao HE; Wu DS; Zhu L; Duan R; Liu TC
    Exp Gerontol; 2018 Nov; 113():150-162. PubMed ID: 30308288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle.
    Cui X; Zhang Y; Wang Z; Yu J; Kong Z; Ružić L
    Exp Physiol; 2019 Oct; 104(10):1505-1517. PubMed ID: 31357248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis.
    Liu MX; Luo L; Fu JH; He JY; Chen MY; He ZJ; Jia J
    Exp Neurol; 2022 Mar; 349():113952. PubMed ID: 34921847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preconditioning intensive training ameliorates reduction of transcription biofactors of PGC1α-pathway in paretic muscle due to cerebral ischemia.
    Abbasian S; Ravasi AA; Haghighi AH; Aydin S; Delbari A; Aydın S
    Biotech Histochem; 2023 Jan; 98(1):46-53. PubMed ID: 35892280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats.
    Li FH; Sun L; Wu DS; Gao HE; Min Z
    Aging (Albany NY); 2019 Jun; 11(12):4159-4182. PubMed ID: 31241467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle.
    Motta VF; Bargut TL; Aguila MB; Mandarim-de-Lacerda CA
    J Appl Physiol (1985); 2017 Oct; 123(4):699-709. PubMed ID: 28495843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of high-intensity interval training (HIIT) on skeletal muscle atrophy, function, and myokine profile in diabetic myopathy.
    Özçatal Y; Akat F; Tatar Y; Fıçıcılar H; Serdaroğlu B; Topal Çelikkan F; Baştuğ M
    Cytokine; 2023 Sep; 169():156279. PubMed ID: 37329818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of antecedent-conditioning high-intensity interval training on BDNF regulation through PGC-1α pathway following cerebral ischemia.
    Abbasian S; Asghar Ravasi A
    Brain Res; 2020 Feb; 1729():146618. PubMed ID: 31866362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-intensity interval training is more effective than continuous training to reduce inflammation markers in female rats with cisplatin nephrotoxicity.
    Leite AB; Lima HN; Flores CO; Oliveira CA; Cunha LEC; Neves JL; Correia TML; de Melo FF; Oliveira MV; de Magalhães ACM; Soares TJ; Amaral LSB
    Life Sci; 2021 Feb; 266():118880. PubMed ID: 33310039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High intensity interval training induces dysregulation of mitochondrial respiratory complex and mitophagy in the hippocampus of middle-aged mice.
    Zhang Y; Liao B; Hu S; Pan SY; Wang GP; Wang YL; Qin ZH; Luo L
    Behav Brain Res; 2021 Aug; 412():113384. PubMed ID: 34147565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of short-term high-intensity interval and continuous exercise training on body composition and cardiac function in obese sarcopenic rats.
    França GO; Frantz EDC; Magliano DC; Bargut TCL; Sepúlveda-Fragoso V; Silvares RR; Daliry A; Nascimento ARD; Borges JP
    Life Sci; 2020 Sep; 256():117920. PubMed ID: 32522571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of high-intensity interval training and saffron aqueous extract supplementation on alterations of body weight and apoptotic indices in skeletal muscle of 4T1 breast cancer-bearing mice with cachexia.
    Ahmadabadi F; Saghebjoo M; Huang CJ; Saffari I; Zardast M
    Appl Physiol Nutr Metab; 2020 May; 45(5):555-563. PubMed ID: 31935119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apelin regulates skeletal muscle adaptation to exercise in a high-intensity interval training model.
    Kilpiö T; Skarp S; Perjés Á; Swan J; Kaikkonen L; Saarimäki S; Szokodi I; Penninger JM; Szabó Z; Magga J; Kerkelä R
    Am J Physiol Cell Physiol; 2024 May; 326(5):C1437-C1450. PubMed ID: 38525542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise of high intensity ameliorates hepatic inflammation and the progression of NASH.
    Fredrickson G; Barrow F; Dietsche K; Parthiban P; Khan S; Robert S; Demirchian M; Rhoades H; Wang H; Adeyi O; Revelo XS
    Mol Metab; 2021 Nov; 53():101270. PubMed ID: 34118476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury.
    Vartanian KB; Stevens SL; Marsh BJ; Williams-Karnesky R; Lessov NS; Stenzel-Poore MP
    J Neuroinflammation; 2011 Oct; 8():140. PubMed ID: 21999375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: study protocol for a randomized controlled clinical trial (Intraining-MET).
    Gallo-Villegas J; Aristizabal JC; Estrada M; Valbuena LH; Narvaez-Sanchez R; Osorio J; Aguirre-Acevedo DC; Calderón JC
    Trials; 2018 Feb; 19(1):144. PubMed ID: 29482601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α.
    Shirvani H; Arabzadeh E
    Eat Weight Disord; 2020 Feb; 25(1):17-24. PubMed ID: 29480414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.
    Bowen TS; Eisenkolb S; Drobner J; Fischer T; Werner S; Linke A; Mangner N; Schuler G; Adams V
    FASEB J; 2017 Jan; 31(1):60-71. PubMed ID: 27650398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.