These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34845804)

  • 41. A General Strategy for Aliphatic C-H Functionalization Enabled by Organic Photoredox Catalysis.
    Margrey KA; Czaplyski WL; Nicewicz DA; Alexanian EJ
    J Am Chem Soc; 2018 Mar; 140(12):4213-4217. PubMed ID: 29522330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decarboxylative Side-Chain Functionalization of Aspartic/Glutamic Acids Using Two-Molecule Photoredox Catalysts.
    Shinkawa Y; Furutani T; Ikeda T; Yamawaki M; Morita T; Yoshimi Y
    J Org Chem; 2022 Sep; 87(17):11816-11825. PubMed ID: 35952660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.
    Zhang M; Li N; Tao X; Ruzi R; Yu S; Zhu C
    Chem Commun (Camb); 2017 Sep; 53(73):10228-10231. PubMed ID: 28861564
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoredox-mediated C-H functionalization and coupling of tertiary aliphatic amines with 2-chloroazoles.
    Singh A; Arora A; Weaver JD
    Org Lett; 2013 Oct; 15(20):5390-3. PubMed ID: 24098895
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of β-Substituted γ-Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis.
    Ma J; Lin J; Zhao L; Harms K; Marsch M; Xie X; Meggers E
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11193-11197. PubMed ID: 29714818
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct C-H Cyanation of Arenes via Organic Photoredox Catalysis.
    McManus JB; Nicewicz DA
    J Am Chem Soc; 2017 Mar; 139(8):2880-2883. PubMed ID: 28177237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploiting photoredox catalysis for carbohydrate modification through C-H and C-C bond activation.
    Shatskiy A; Stepanova EV; Kärkäs MD
    Nat Rev Chem; 2022 Nov; 6(11):782-805. PubMed ID: 37118094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals.
    Nielsen MK; Shields BJ; Liu J; Williams MJ; Zacuto MJ; Doyle AG
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7191-7194. PubMed ID: 28471521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.
    Feng ZJ; Xuan J; Xia XD; Ding W; Guo W; Chen JR; Zou YQ; Lu LQ; Xiao WJ
    Org Biomol Chem; 2014 Apr; 12(13):2037-40. PubMed ID: 24553793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoredox-Catalyzed Site-Selective α-C(sp
    Ashley MA; Yamauchi C; Chu JCK; Otsuka S; Yorimitsu H; Rovis T
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):4002-4006. PubMed ID: 30768740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predictive Model for Site-Selective Aryl and Heteroaryl C-H Functionalization via Organic Photoredox Catalysis.
    Margrey KA; McManus JB; Bonazzi S; Zecri F; Nicewicz DA
    J Am Chem Soc; 2017 Aug; 139(32):11288-11299. PubMed ID: 28718642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A De Novo Metalloenzyme for Cerium Photoredox Catalysis.
    Klein AS; Leiss-Maier F; Mühlhofer R; Boesen B; Mustafa G; Kugler H; Zeymer C
    J Am Chem Soc; 2024 Sep; 146(38):25976-25985. PubMed ID: 39115259
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoinduced C(sp
    Wang C; Qi R; Wang R; Xu Z
    Acc Chem Res; 2023 Aug; 56(15):2110-2125. PubMed ID: 37467427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: direct arylation of benzylic ethers.
    Qvortrup K; Rankic DA; MacMillan DW
    J Am Chem Soc; 2014 Jan; 136(2):626-9. PubMed ID: 24341523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Highly Efficient Gold-Catalyzed Photoredox α-C(sp(3))-H Alkynylation of Tertiary Aliphatic Amines with Sunlight.
    Xie J; Shi S; Zhang T; Mehrkens N; Rudolph M; Hashmi AS
    Angew Chem Int Ed Engl; 2015 May; 54(20):6046-50. PubMed ID: 25823756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ketones from aldehydes via alkyl C(sp
    Wang HY; Wang XH; Zhou BA; Zhang CL; Ye S
    Nat Commun; 2023 Jul; 14(1):4044. PubMed ID: 37422483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pd and photoredox dual catalysis assisted decarboxylative
    Rajput S; Kaur R; Jain N
    Org Biomol Chem; 2022 Feb; 20(7):1453-1461. PubMed ID: 35088800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct β-alkylation of aldehydes via photoredox organocatalysis.
    Terrett JA; Clift MD; MacMillan DW
    J Am Chem Soc; 2014 May; 136(19):6858-61. PubMed ID: 24754456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis.
    Campbell MW; Compton JS; Kelly CB; Molander GA
    J Am Chem Soc; 2019 Dec; 141(51):20069-20078. PubMed ID: 31833357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoredox activation for the direct β-arylation of ketones and aldehydes.
    Pirnot MT; Rankic DA; Martin DB; MacMillan DW
    Science; 2013 Mar; 339(6127):1593-6. PubMed ID: 23539600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.