BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34845862)

  • 1. In Vivo Cellular-Level 3D Imaging of Peripheral Nerves Using a Dual-Focusing Technique for Intra-Neural Interface Implantation.
    Lee MW; Jang N; Choi N; Yang S; Jeong J; Nam HS; Oh SR; Kim K; Hwang D
    Adv Sci (Weinh); 2022 Jan; 9(3):e2102876. PubMed ID: 34845862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging peripheral nerve micro-anatomy with MUSE, 2D and 3D approaches.
    Kolluru C; Todd A; Upadhye AR; Liu Y; Berezin MY; Fereidouni F; Levenson RM; Wang Y; Shoffstall AJ; Jenkins MW; Wilson DL
    Sci Rep; 2022 Jun; 12(1):10205. PubMed ID: 35715554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Microelectrode Arrays in Peripheral Nerve Using Micro Computed Tomography
    Frederick RA; Margolis R; Hoyt K; Cogan SF
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3432-3435. PubMed ID: 33018741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography.
    Islam MS; Oliveira MC; Wang Y; Henry FP; Randolph MA; Park BH; de Boer JF
    J Biomed Opt; 2012 May; 17(5):056012. PubMed ID: 22612135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Initial chronic results of flexible sieve electrodes as interface to nerve stumps].
    Stieglitz T; Poessnecker J; Rosahl SK; Haastert K; Brinker T; Meyer JU
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():692-5. PubMed ID: 12465276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting morphometric information from rat sciatic nerve using optical coherence tomography.
    Hope J; Braeuer B; Amirapu S; McDaid A; Vanholsbeeck F
    J Biomed Opt; 2018 Nov; 23(11):1-14. PubMed ID: 30392195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve.
    Badia J; Boretius T; Pascual-Font A; Udina E; Stieglitz T; Navarro X
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21571604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral and cellular consequences of high-electrode count Utah Arrays chronically implanted in rat sciatic nerve.
    Wark HA; Mathews KS; Normann RA; Fernandez E
    J Neural Eng; 2014 Aug; 11(4):046027. PubMed ID: 25031219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fascicle-selectivity of an intraneural stimulation electrode in the rabbit sciatic nerve.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):192-7. PubMed ID: 21954195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved
    Saytashev I; Yoon YC; Vakoc BJ; Vasudevan S; Hammer DX
    J Biomed Opt; 2023 Feb; 28(2):026002. PubMed ID: 36785561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosafety assessment of an intra-neural electrode (TIME) following sub-chronic implantation in the median nerve of Göttingen minipigs.
    Kundu A; Wirenfeldt M; Harreby KR; Jensen W
    Int J Artif Organs; 2014 Jun; 37(6):466-76. PubMed ID: 24980257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gray-scale contrast-enhanced ultrasonography for quantitative evaluation of the blood perfusion of the sciatic nerves with crush injury.
    Wang Y; Tang P; Zhang L; Wan W; He C; Tang J
    Acad Radiol; 2011 Oct; 18(10):1285-91. PubMed ID: 21784669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes.
    Lawrence SM; Dhillon GS; Jensen W; Yoshida K; Horch KW
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):345-8. PubMed ID: 15473197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-induced changes in peripheral nerve by stereotactic radiosurgery: a study on the sciatic nerve of rabbit.
    Lin Z; Wu VW; Ju W; Yamada Y; Chen L
    J Neurooncol; 2011 Apr; 102(2):179-85. PubMed ID: 20652361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intrafascicular electrode for recording of action potentials in peripheral nerves.
    Malagodi MS; Horch KW; Schoenberg AA
    Ann Biomed Eng; 1989; 17(4):397-410. PubMed ID: 2774314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness.
    Freeberg MJ; Stone MA; Triolo RJ; Tyler DJ
    J Neural Eng; 2017 Jun; 14(3):036022. PubMed ID: 28287078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.