These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 34845903)
41. Transition States and Control of Substrate Preference in the Promiscuous Phosphatase PP1. Chu Y; Williams NH; Hengge AC Biochemistry; 2017 Aug; 56(30):3923-3933. PubMed ID: 28678475 [TBL] [Abstract][Full Text] [Related]
42. Evolution of enzymatic activities in the enolase superfamily: crystal structures of the L-Ala-D/L-Glu epimerases from Escherichia coli and Bacillus subtilis. Gulick AM; Schmidt DM; Gerlt JA; Rayment I Biochemistry; 2001 Dec; 40(51):15716-24. PubMed ID: 11747448 [TBL] [Abstract][Full Text] [Related]
43. Molecular recognition of the substrate diphosphate group governs product diversity in trichodiene synthase mutants. Vedula LS; Rynkiewicz MJ; Pyun HJ; Coates RM; Cane DE; Christianson DW Biochemistry; 2005 Apr; 44(16):6153-63. PubMed ID: 15835903 [TBL] [Abstract][Full Text] [Related]
44. The Structure and Function of a Microbial Allantoin Racemase Reveal the Origin and Conservation of a Catalytic Mechanism. Cendron L; Ramazzina I; Puggioni V; Maccacaro E; Liuzzi A; Secchi A; Zanotti G; Percudani R Biochemistry; 2016 Nov; 55(46):6421-6432. PubMed ID: 27797489 [TBL] [Abstract][Full Text] [Related]
45. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. Chiu WC; You JY; Liu JS; Hsu SK; Hsu WH; Shih CH; Hwang JK; Wang WC J Mol Biol; 2006 Jun; 359(3):741-53. PubMed ID: 16650857 [TBL] [Abstract][Full Text] [Related]
46. Crystal structures of 2-methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution. Liu S; Lu Z; Han Y; Melamud E; Dunaway-Mariano D; Herzberg O Biochemistry; 2005 Mar; 44(8):2949-62. PubMed ID: 15723538 [TBL] [Abstract][Full Text] [Related]
47. Structure and mechanism of glutamate racemase from Aquifex pyrophilus. Hwang KY; Cho CS; Kim SS; Sung HC; Yu YG; Cho Y Nat Struct Biol; 1999 May; 6(5):422-6. PubMed ID: 10331867 [TBL] [Abstract][Full Text] [Related]
48. Structural insights into the catalysis and substrate specificity of cyanobacterial aspartate racemase McyF. Cao DD; Zhang CP; Zhou K; Jiang YL; Tan XF; Xie J; Ren YM; Chen Y; Zhou CZ; Hou WT Biochem Biophys Res Commun; 2019 Jul; 514(4):1108-1114. PubMed ID: 31101340 [TBL] [Abstract][Full Text] [Related]
49. Investigation of the role of Arg301 identified in the X-ray structure of phosphite dehydrogenase. Hung JE; Fogle EJ; Christman HD; Johannes TW; Zhao H; Metcalf WW; van der Donk WA Biochemistry; 2012 May; 51(21):4254-62. PubMed ID: 22564138 [TBL] [Abstract][Full Text] [Related]
50. Identification of amino acids involved in catalytic process of M. tuberculosis GlmU acetyltransferase. Zhou Y; Yu W; Zheng Q; Xin Y; Ma Y Glycoconj J; 2012 Aug; 29(5-6):297-303. PubMed ID: 22669463 [TBL] [Abstract][Full Text] [Related]
51. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery. Ruzheinikov SN; Taal MA; Sedelnikova SE; Baker PJ; Rice DW Structure; 2005 Nov; 13(11):1707-13. PubMed ID: 16271894 [TBL] [Abstract][Full Text] [Related]
52. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115. Nakamichi Y; Oiki S; Mikami B; Murata K; Hashimoto W Protein J; 2016 Aug; 35(4):300-9. PubMed ID: 27402448 [TBL] [Abstract][Full Text] [Related]
53. Structural studies of a hyperthermophilic thymidylate kinase enzyme reveal conformational substates along the reaction coordinate. Biswas A; Shukla A; Chaudhary SK; Santhosh R; Jeyakanthan J; Sekar K FEBS J; 2017 Aug; 284(15):2527-2544. PubMed ID: 28627020 [TBL] [Abstract][Full Text] [Related]
54. Biochemical characterization of 2-phosphinomethylmalate synthase from Streptomyces hygroscopicus: A member of the DRE-TIM metallolyase superfamily. Conte JV; Frantom PA Arch Biochem Biophys; 2020 Sep; 691():108489. PubMed ID: 32697946 [TBL] [Abstract][Full Text] [Related]
55. Enzymatic properties and physiological function of glutamate racemase from Thermus thermophilus. Miyamoto T; Moriya T; Homma H; Oshima T Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140461. PubMed ID: 32474108 [TBL] [Abstract][Full Text] [Related]
56. Glutamate racemase dimerization inhibits dynamic conformational flexibility and reduces catalytic rates. Mehboob S; Guo L; Fu W; Mittal A; Yau T; Truong K; Johlfs M; Long F; Fung LW; Johnson ME Biochemistry; 2009 Jul; 48(29):7045-55. PubMed ID: 19552402 [TBL] [Abstract][Full Text] [Related]
57. Screening, overexpression and characterization of an N-acylamino acid racemase from Amycolatopsis orientalis subsp. lurida. Verseck S; Bommarius A; Kula MR Appl Microbiol Biotechnol; 2001 Apr; 55(3):354-61. PubMed ID: 11341319 [TBL] [Abstract][Full Text] [Related]
58. Substitution of Aromatic Residues with Polar Residues in the Active Site Pocket of epi-Isozizaene Synthase Leads to the Generation of New Cyclic Sesquiterpenes. Blank PN; Barrow GH; Chou WKW; Duan L; Cane DE; Christianson DW Biochemistry; 2017 Oct; 56(43):5798-5811. PubMed ID: 28967743 [TBL] [Abstract][Full Text] [Related]
59. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. Rohman A; van Oosterwijk N; Thunnissen AM; Dijkstra BW J Biol Chem; 2013 Dec; 288(49):35559-68. PubMed ID: 24165124 [TBL] [Abstract][Full Text] [Related]