These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34846028)

  • 21. Virtual reality as a tool for balance research: Eyes open body sway is reproduced in photo-realistic, but not in abstract virtual scenes.
    Assländer L; Streuber S
    PLoS One; 2020; 15(10):e0241479. PubMed ID: 33119679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable or able? Effect of virtual reality stimulation on static balance of post-stroke patients and healthy subjects.
    D'Antonio E; Tieri G; Patané F; Morone G; Iosa M
    Hum Mov Sci; 2020 Apr; 70():102569. PubMed ID: 31950897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between postural stability and cybersickness: It's complicated - An experimental trial assessing practical implications of cybersickness etiology.
    Litleskare S
    Physiol Behav; 2021 Jul; 236():113422. PubMed ID: 33839164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postural precursors of motion sickness in head-mounted displays: drivers and passengers, women and men.
    Curry C; Peterson N; Li R; Stoffregen TA
    Ergonomics; 2020 Dec; 63(12):1502-1511. PubMed ID: 32780665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of virtual reality versus conventional balance training on balance of the elderly.
    Yousefi Babadi S; Daneshmandi H
    Exp Gerontol; 2021 Oct; 153():111498. PubMed ID: 34311059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual Reality Immersion in Healthy Individuals: Ellipse Sway Area of an Electrical Shuttle Balance.
    Coelho TS; Neto EM; Bazan R; de Souza LAPS; Luvizutto GJ
    J Mot Behav; 2021; 53(3):343-350. PubMed ID: 32573359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reliability and Validity of a Virtual Reality-Based System for Evaluating Postural Stability.
    Liang HW; Chi SY; Chen BY; Hwang YH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():85-91. PubMed ID: 33125332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintaining Balance when Looking at a Virtual Reality Three-Dimensional Display of a Field of Moving Dots or at a Virtual Reality Scene.
    Chiarovano E; de Waele C; MacDougall HG; Rogers SJ; Burgess AM; Curthoys IS
    Front Neurol; 2015; 6():164. PubMed ID: 26284023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the Loss of Binocular and Motion Parallax on Static Postural Stability.
    Ishikawa K; Hasegawa N; Yokoyama A; Sakaki Y; Akagi H; Kawata A; Mani H; Asaka T
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sinusoidal Optic Flow Perturbations Reduce Transient but Not Continuous Postural Stability: A Virtual Reality-Based Study.
    Ketterer J; Ringhof S; Gehring D; Gollhofer A
    Front Physiol; 2022; 13():803185. PubMed ID: 35665227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Visual Stimuli on Stability and Complexity of Postural Control.
    Luo H; Wang X; Fan M; Deng L; Jian C; Wei M; Luo J
    Front Neurol; 2018; 9():48. PubMed ID: 29472888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of Vision in Human Postural Control: A Virtual Reality-based Study.
    Mohebbi A; Amiri P; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3347-3350. PubMed ID: 33018721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Nintendo
    Rohof B; Betsch M; Rath B; Tingart M; Quack V
    Eur J Med Res; 2020 Sep; 25(1):44. PubMed ID: 32972447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Influence of Proprioceptive Training with the Use of Virtual Reality on Postural Stability of Workers Working at Height.
    Cyma-Wejchenig M; Tarnas J; Marciniak K; Stemplewski R
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia.
    Khurana M; Walia S; Noohu MM
    Top Spinal Cord Inj Rehabil; 2017; 23(3):263-270. PubMed ID: 29339902
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of modified optic flow gain on quiet stance.
    Lavalle LK; Cleworth TW
    Neurosci Lett; 2023 Feb; 797():137068. PubMed ID: 36641046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Virtual Reality Training (Exergaming) Compared to Alternative Exercise Training and Passive Control on Standing Balance and Functional Mobility in Healthy Community-Dwelling Seniors: A Meta-Analytical Review.
    Donath L; Rössler R; Faude O
    Sports Med; 2016 Sep; 46(9):1293-309. PubMed ID: 26886474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does the Management of Visual and Audible Motion Information during an Immersive Virtual Reality Timed Up and Go Test Impact Locomotor Performance in the Elderly?
    Muhla F; Duclos K; Clanché F; Meyer P; Maïaux S; Colnat-Coulbois S; Gauchard GC
    Gerontology; 2022; 68(4):456-464. PubMed ID: 34365451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of virtual reality on postural stability during movements of quiet stance.
    Horlings CG; Carpenter MG; Küng UM; Honegger F; Wiederhold B; Allum JH
    Neurosci Lett; 2009 Feb; 451(3):227-31. PubMed ID: 19146921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A virtual reality head stability test for patients with vestibular dysfunction.
    Lubetzky AV; Hujsak BD
    J Vestib Res; 2018; 28(5-6):393-400. PubMed ID: 30856135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.