These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34846031)

  • 1. Gender differences of the improvement in balance control based on the real-time visual feedback system with smart wearable devices.
    Wang IL; Wang LI; Xue SJ; Hu R; Jian RJ; Ho CS
    Acta Bioeng Biomech; 2021; 23(1):163-171. PubMed ID: 34846031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Real-Time Visual Feedback System in Balance Training of the Center of Pressure with Smart Wearable Devices.
    Wang IL; Wang LI; Liu Y; Su Y; Yao S; Ho CS
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward more reliable stability measurements in stance: recommendations for number of measurements, foot position and feedback -- a cross-sectional study among servicemen.
    van der Heijden SMT; Prins MR; van der Wurff P
    Mil Med Res; 2019 Jul; 6(1):21. PubMed ID: 31296263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of assistive devices on postural control following a balance disturbance along the anterior-posterior direction.
    Lee Y; Badr R; Bove B; Jewett P; Goehring M
    Gait Posture; 2021 Oct; 90():239-244. PubMed ID: 34530310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between oscillations about the vertical axis and center of pressure displacements in single and double leg upright stance.
    Beaulieu M; Allard P; Simoneau M; Dalleau G; Hazime FA; Rivard CH
    Am J Phys Med Rehabil; 2010 Oct; 89(10):809-16. PubMed ID: 20855981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sensorimotor training on balance measures and proprioception among middle and older age adults with diabetic peripheral neuropathy.
    Ahmad I; Noohu MM; Verma S; Singla D; Hussain ME
    Gait Posture; 2019 Oct; 74():114-120. PubMed ID: 31499405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unintentional drifts during quiet stance and voluntary body sway.
    Rasouli O; Solnik S; Furmanek MP; Piscitelli D; Falaki A; Latash ML
    Exp Brain Res; 2017 Jul; 235(7):2301-2316. PubMed ID: 28477042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Short-Term Visual Feedback Training on the Stability of the Roundhouse Kicking Technique in Young Karatekas.
    Vando S; Longo S; Cavaggioni L; Maurino L; Larion A; Invernizzi PL; Padulo J
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33670474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of single-leg stance using a textured balance board compared to a smooth balance board and the floor: A cross-sectional study.
    Alfuth M; Ebert M; Klemp J; Knicker A
    Gait Posture; 2021 Feb; 84():215-220. PubMed ID: 33360917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetry of recurrent dynamics as a function of postural stance.
    King AC; Wang Z; Newell KM
    Exp Brain Res; 2012 Aug; 220(3-4):239-50. PubMed ID: 22692646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of plantar cutaneous sensation in unperturbed stance.
    Meyer PF; Oddsson LI; De Luca CJ
    Exp Brain Res; 2004 Jun; 156(4):505-12. PubMed ID: 14968274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of foot position on balance ability in single-leg stance with and without visual feedback.
    Schneiders A; Gregory K; Karas S; Mündermann A
    J Biomech; 2016 Jun; 49(9):1969-1972. PubMed ID: 27156374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Augmented Visual Feedback on Balance Control in Unilateral Transfemoral Amputees.
    Fuchs K; Krauskopf T; Lauck TB; Klein L; Mueller M; Herget GW; Von Tscharner V; Stutzig N; Stieglitz T; Pasluosta C
    Front Neurosci; 2021; 15():727527. PubMed ID: 34588950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from double-leg to single-leg stance in the assessment of postural stability.
    Wiesław Błaszczyk J; Fredyk A; Mikołaj Błaszczyk P
    J Biomech; 2020 Sep; 110():109982. PubMed ID: 32827788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of task constraints in relating laboratory and clinical measures of balance.
    Kuznetsov NA; Riley MA
    Gait Posture; 2015 Sep; 42(3):275-9. PubMed ID: 26112778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posture control development in children aged 2-7 years old, based on the changes of repeatability of the stability indices.
    Sobera M; Siedlecka B; Syczewska M
    Neurosci Lett; 2011 Mar; 491(1):13-7. PubMed ID: 21215293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness.
    Li R; Peterson N; Walter HJ; Rath R; Curry C; Stoffregen TA
    Gait Posture; 2018 Sep; 65():251-255. PubMed ID: 30558940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.