BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34846104)

  • 1. Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing.
    Vu TV; Das S; Nguyen CC; Kim J; Kim JY
    Biotechnol J; 2022 Jul; 17(7):e2100413. PubMed ID: 34846104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Strand Annealing in Cancer.
    Blasiak J
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise CRISPR/Cpf1 genome editing system in the Deinococcus radiodurans with superior DNA repair mechanisms.
    Chen Z; Hu J; Dai J; Zhou C; Hua Y; Hua X; Zhao Y
    Microbiol Res; 2024 Jul; 284():127713. PubMed ID: 38608339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks.
    van de Kooij B; Kruswick A; van Attikum H; Yaffe MB
    Nat Commun; 2022 Sep; 13(1):5295. PubMed ID: 36075911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
    Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY
    Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Single-Strand Annealing and its Role in Genome Maintenance.
    Bhargava R; Onyango DO; Stark JM
    Trends Genet; 2016 Sep; 32(9):566-575. PubMed ID: 27450436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Rad51-independent pathway promotes single-strand template repair in gene editing.
    Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE
    PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing.
    Bai W; Huang M; Li C; Li J
    Synth Syst Biotechnol; 2023 Dec; 8(4):584-596. PubMed ID: 37711546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies.
    Liu Y; Cottle WT; Ha T
    Trends Genet; 2023 Jul; 39(7):560-574. PubMed ID: 36967246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of unwanted editing byproducts in gene editing.
    Yin J; Hu J
    Acta Biochim Biophys Sin (Shanghai); 2022 May; 54(6):767-781. PubMed ID: 35643959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq.
    Dobbs FM; van Eijk P; Fellows MD; Loiacono L; Nitsch R; Reed SH
    Nat Commun; 2022 Jul; 13(1):3989. PubMed ID: 35810156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PASTE: a high-throughput method for large DNA insertions.
    Awan MJA; Mahmood MA; Naqvi RZ; Mansoor S
    Trends Plant Sci; 2023 May; 28(5):509-511. PubMed ID: 36898908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR-Cas systems.
    Chen L; Gao H; Zhou B; Wang Y
    FEBS Open Bio; 2021 Jul; 11(7):1965-1980. PubMed ID: 33999508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annealing of Complementary DNA Sequences During Double-Strand Break Repair in
    Holsclaw JK; Sekelsky J
    Genetics; 2017 May; 206(1):467-480. PubMed ID: 28258182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.