BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34846122)

  • 1. Single-Base Resolution Mapping Reveals Distinct 5-Formylcytidine in
    Wang Y; Chen Z; Zhang X; Weng X; Deng J; Yang W; Wu F; Han S; Xia C; Zhou Y; Chen Y; Zhou X
    ACS Chem Biol; 2022 Jan; 17(1):77-84. PubMed ID: 34846122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.
    Lovejoy AF; Riordan DP; Brown PO
    PLoS One; 2014; 9(10):e110799. PubMed ID: 25353621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Quantification of Modified Nucleosides in
    Tardu M; Jones JD; Kennedy RT; Lin Q; Koutmou KS
    ACS Chem Biol; 2019 Jul; 14(7):1403-1409. PubMed ID: 31243956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases.
    Arguello AE; Li A; Sun X; Eggert TW; Mairhofer E; Kleiner RE
    Nat Commun; 2022 Jul; 13(1):4176. PubMed ID: 35853884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs.
    Tuck AC; Tollervey D
    Cell; 2013 Aug; 154(5):996-1009. PubMed ID: 23993093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon.
    van Hoof A; Frischmeyer PA; Dietz HC; Parker R
    Science; 2002 Mar; 295(5563):2262-4. PubMed ID: 11910110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae.
    Walters RW; Matheny T; Mizoue LS; Rao BS; Muhlrad D; Parker R
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):480-485. PubMed ID: 28031484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Premature 3'-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in Saccharomyces cerevisiae.
    Sparks KA; Mayer SA; Dieckmann CL
    Mol Cell Biol; 1997 Aug; 17(8):4199-207. PubMed ID: 9234677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.
    Bensidoun P; Raymond P; Oeffinger M; Zenklusen D
    Methods; 2016 Apr; 98():104-114. PubMed ID: 26784711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of the 3' end of yeast mitochondrial mRNAs occurs by site-specific cleavage two bases downstream of a conserved dodecamer sequence.
    Hofmann TJ; Min J; Zassenhaus HP
    Yeast; 1993 Dec; 9(12):1319-30. PubMed ID: 7512302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations.
    Yin Z; Hatton L; Brown AJ
    Mol Microbiol; 2000 Feb; 35(3):553-65. PubMed ID: 10672178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial consequences of defective processing of specific yeast mRNAs revealed by fluorescent in situ hybridization.
    Long RM; Elliott DJ; Stutz F; Rosbash M; Singer RH
    RNA; 1995 Dec; 1(10):1071-8. PubMed ID: 8595562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants for binding of a 40 kDa protein to the leaders of yeast mitochondrial mRNAs.
    Dekker PJ; Stuurman J; van Oosterum K; Grivell LA
    Nucleic Acids Res; 1992 Jun; 20(11):2647-55. PubMed ID: 1377379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the Brr5/Ysh1 C-terminal domain and its homolog Syc1 in mRNA 3'-end processing in Saccharomyces cerevisiae.
    Zhelkovsky A; Tacahashi Y; Nasser T; He X; Sterzer U; Jensen TH; Domdey H; Moore C
    RNA; 2006 Mar; 12(3):435-45. PubMed ID: 16431986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlkB Homologue 1 Demethylates
    Ma CJ; Ding JH; Ye TT; Yuan BF; Feng YQ
    ACS Chem Biol; 2019 Jul; 14(7):1418-1425. PubMed ID: 31188562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation.
    Aw JG; Shen Y; Wilm A; Sun M; Lim XN; Boon KL; Tapsin S; Chan YS; Tan CP; Sim AY; Zhang T; Susanto TT; Fu Z; Nagarajan N; Wan Y
    Mol Cell; 2016 May; 62(4):603-17. PubMed ID: 27184079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection.
    Celik A; Baker R; He F; Jacobson A
    RNA; 2017 May; 23(5):735-748. PubMed ID: 28209632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs.
    Sibler AP; Dirheimer G; Martin RP
    FEBS Lett; 1986 Jan; 194(1):131-8. PubMed ID: 2416594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codon optimality is a major determinant of mRNA stability.
    Presnyak V; Alhusaini N; Chen YH; Martin S; Morris N; Kline N; Olson S; Weinberg D; Baker KE; Graveley BR; Coller J
    Cell; 2015 Mar; 160(6):1111-24. PubMed ID: 25768907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.