These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34846122)

  • 21. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase.
    Levi O; Arava YS
    Nucleic Acids Res; 2021 Jan; 49(1):432-443. PubMed ID: 33305314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4.
    Miller JE; Zhang L; Jiang H; Li Y; Pugh BF; Reese JC
    G3 (Bethesda); 2018 Jan; 8(1):315-330. PubMed ID: 29158339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-transcriptional regulation through the HO 3'-UTR by Mpt5, a yeast homolog of Pumilio and FBF.
    Tadauchi T; Matsumoto K; Herskowitz I; Irie K
    EMBO J; 2001 Feb; 20(3):552-61. PubMed ID: 11157761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome.
    Riordan DP; Herschlag D; Brown PO
    Nucleic Acids Res; 2011 Mar; 39(4):1501-9. PubMed ID: 20959291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability.
    Vilela C; Linz B; Rodrigues-Pousada C; McCarthy JE
    Nucleic Acids Res; 1998 Mar; 26(5):1150-9. PubMed ID: 9469820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader.
    Vega Laso MR; Zhu D; Sagliocco F; Brown AJ; Tuite MF; McCarthy JE
    J Biol Chem; 1993 Mar; 268(9):6453-62. PubMed ID: 8454618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing.
    Jamonnak N; Creamer TJ; Darby MM; Schaughency P; Wheelan SJ; Corden JL
    RNA; 2011 Nov; 17(11):2011-25. PubMed ID: 21954178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functions for S. cerevisiae Swd2p in 3' end formation of specific mRNAs and snoRNAs and global histone 3 lysine 4 methylation.
    Dichtl B; Aasland R; Keller W
    RNA; 2004 Jun; 10(6):965-77. PubMed ID: 15146080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria.
    Schonauer MS; Kastaniotis AJ; Hiltunen JK; Dieckmann CL
    Mol Cell Biol; 2008 Nov; 28(21):6646-57. PubMed ID: 18779316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing.
    Heinrich S; Sidler CL; Azzalin CM; Weis K
    RNA; 2017 Feb; 23(2):134-141. PubMed ID: 28096443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events.
    Qin D; Huang L; Wlodaver A; Andrade J; Staley JP
    RNA; 2016 Feb; 22(2):237-53. PubMed ID: 26647463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. mRNA decay is rapidly induced after spore germination of Saccharomyces cerevisiae.
    Brengues M; Pintard L; Lapeyre B
    J Biol Chem; 2002 Oct; 277(43):40505-12. PubMed ID: 12181322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid-protein complex that contains mRNAs and subunits of the RNA-processing body.
    Chang W; Zaarour RF; Reck-Peterson S; Rinn J; Singer RH; Snyder M; Novick P; Mooseker MS
    RNA; 2008 Mar; 14(3):491-502. PubMed ID: 18218704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae.
    Dieckmann CL; Staples RR
    Int Rev Cytol; 1994; 152():145-81. PubMed ID: 8206703
    [No Abstract]   [Full Text] [Related]  

  • 36. Expression analysis of RNA14, a gene involved in mRNA 3' end maturation in yeast: characterization of the rna14-5 mutant strain.
    Brendolise C; Rouillard JM; Dufour ME; Lacroute F
    Mol Genet Genomics; 2002 Jun; 267(4):515-25. PubMed ID: 12111559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-transcriptional modification of RNAs by artificial Box H/ACA and Box C/D RNPs.
    Huang C; Karijolich J; Yu YT
    Methods Mol Biol; 2011; 718():227-44. PubMed ID: 21370052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation.
    Bonnefoy N; Fox TD
    Mol Gen Genet; 2000 Jan; 262(6):1036-46. PubMed ID: 10660064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A stalled-ribosome rescue factor Pth3 is required for mitochondrial translation against antibiotics in Saccharomyces cerevisiae.
    Hoshino S; Kanemura R; Kurita D; Soutome Y; Himeno H; Takaine M; Watanabe M; Nameki N
    Commun Biol; 2021 Mar; 4(1):300. PubMed ID: 33686140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An essential gene in Saccharomyces cerevisiae shares an upstream regulatory element with PRP4.
    Petersen-Bjørn S; Harrington TR; Friesen JD
    Yeast; 1990; 6(4):345-52. PubMed ID: 2204247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.