These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 34846272)
1. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires. Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272 [TBL] [Abstract][Full Text] [Related]
2. Upgrading pyrolytic residue from waste tires to commercial carbon black. Zhang X; Li H; Cao Q; Jin L; Wang F Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516 [TBL] [Abstract][Full Text] [Related]
3. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable. Xu J; Yu J; He W; Huang J; Xu J; Li G Sci Total Environ; 2021 Nov; 793():148597. PubMed ID: 34182453 [TBL] [Abstract][Full Text] [Related]
4. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor. Xu J; Yu J; He W; Huang J; Xu J; Li G Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869 [TBL] [Abstract][Full Text] [Related]
5. Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO Dziejarski B; Hernández-Barreto DF; Moreno-Piraján JC; Giraldo L; Serafin J; Knutsson P; Andersson K; Krzyżyńska R Environ Res; 2024 Apr; 247():118169. PubMed ID: 38244973 [TBL] [Abstract][Full Text] [Related]
6. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis. Xu J; Yu J; Xu J; Sun C; He W; Huang J; Li G Sci Total Environ; 2020 Nov; 742():140235. PubMed ID: 32629243 [TBL] [Abstract][Full Text] [Related]
7. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Martínez JD; Cardona-Uribe N; Murillo R; García T; López JM Waste Manag; 2019 Feb; 85():574-584. PubMed ID: 30803613 [TBL] [Abstract][Full Text] [Related]
8. Effects of molten salt thermal treatment on the properties improvement of waste tire pyrolytic char. Zou C; Ren Y; Li S; Hu H; Cao C; Tang H; Li X; Yao H Waste Manag; 2022 Jul; 149():53-59. PubMed ID: 35714436 [TBL] [Abstract][Full Text] [Related]
10. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation. Urrego-Yepes W; Cardona-Uribe N; Vargas-Isaza CA; Martínez JD J Environ Manage; 2021 Jun; 287():112292. PubMed ID: 33690014 [TBL] [Abstract][Full Text] [Related]
11. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Hwang IH; Kobayashi J; Kawamoto K Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576 [TBL] [Abstract][Full Text] [Related]
12. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review. Mello M; Rutto H; Seodigeng T J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581 [TBL] [Abstract][Full Text] [Related]
13. Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions. Sebe E; Nagy G; Kállay AA Environ Technol; 2024 Oct; 45(24):5025-5036. PubMed ID: 37970831 [TBL] [Abstract][Full Text] [Related]
14. High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma. Hou S; Xie Z; Zhang D; Yang B; Lei Y; Liang F Environ Res; 2023 Dec; 238(Pt 1):117071. PubMed ID: 37669736 [TBL] [Abstract][Full Text] [Related]
15. Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires. Costa SMR; Fowler D; Carreira GA; Portugal I; Silva CM Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329479 [TBL] [Abstract][Full Text] [Related]
16. Flash Pyrolysis of Waste Tires in an Entrained Flow Reactor-An Experimental Study. Ramani B; Anjum A; Bramer E; Dierkes W; Blume A; Brem G Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932095 [TBL] [Abstract][Full Text] [Related]
17. The steam gasification reactivity and kinetics of municipal solid waste chars derived from rapid pyrolysis. Xu F; Wang B; Yang D; Qiao Y; Tian Y Waste Manag; 2018 Oct; 80():64-72. PubMed ID: 30455028 [TBL] [Abstract][Full Text] [Related]
18. Co-pyrolysis development of waste tire-sludge adsorbent by mixed of waste tires and oily sludge. Tang C; Guan J; Xie S Sci Rep; 2024 Aug; 14(1):19936. PubMed ID: 39198600 [TBL] [Abstract][Full Text] [Related]
19. Chromium removal from water by activated carbon developed from waste rubber tires. Gupta VK; Ali I; Saleh TA; Siddiqui MN; Agarwal S Environ Sci Pollut Res Int; 2013 Mar; 20(3):1261-8. PubMed ID: 22573097 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Chemically Activated Pyrolytic Carbon Black Derived from Waste Tires as a Candidate for Nanomaterial Precursor. González-González RB; González LT; Iglesias-González S; González-González E; Martinez-Chapa SO; Madou M; Alvarez MM; Mendoza A Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33172181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]