These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 34846272)

  • 21. Influence of Pyrolytic Carbon Black Derived from Waste Tires at Varied Temperatures within an Industrial Continuous Rotating Moving Bed System.
    Fang H; Hou Z; Shan L; Cai X; Xin Z
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.
    Kumagai S; Hosaka T; Kameda T; Yoshioka T
    Environ Sci Technol; 2015 Nov; 49(22):13558-65. PubMed ID: 26488423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide.
    Teng H; Lin YC; Hsu LY
    J Air Waste Manag Assoc; 2000 Nov; 50(11):1940-6. PubMed ID: 11111338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Status of waste tires and management practice in Botswana.
    Mmereki D; Machola B; Mokokwe K
    J Air Waste Manag Assoc; 2019 Oct; 69(10):1230-1246. PubMed ID: 28278033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface functional characteristics (C, O, S) of waste tire-derived carbon black before and after steam activation.
    Lin HY; Chen WC; Yuan CS; Hung CH
    J Air Waste Manag Assoc; 2008 Jan; 58(1):78-84. PubMed ID: 18236797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances on waste tires: bibliometric analysis, processes, and waste management approaches.
    Magagula SI; Lebelo K; Motloung TM; Mokhena TC; Mochane MJ
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118213-118245. PubMed ID: 37936049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black.
    Trubetskaya A; Kling J; Ershag O; Attard TM; Schröder E
    J Hazard Mater; 2019 Mar; 365():846-856. PubMed ID: 30481735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Waste tire valorization by intermediate pyrolysis using a continuous twin-auger reactor: Operational features.
    Martínez JD; Campuzano F; Cardona-Uribe N; Arenas CN; Muñoz-Lopera D
    Waste Manag; 2020 Jul; 113():404-412. PubMed ID: 32593106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process.
    Yuan CS; Lin HY; Wu CH; Liu MH; Hung CH
    J Air Waste Manag Assoc; 2004 Jul; 54(7):862-70. PubMed ID: 15303299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere.
    Zaini IN; García López C; Pretz T; Yang W; Jönsson PG
    Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review.
    Saleh TA; Gupta VK
    Adv Colloid Interface Sci; 2014 Sep; 211():93-101. PubMed ID: 25001042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solar pyrolysis of waste rubber tires using photoactive catalysts.
    Hijazi A; Boyadjian C; Ahmad MN; Zeaiter J
    Waste Manag; 2018 Jul; 77():10-21. PubMed ID: 30008400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis of Waste Tires: A Review.
    Han W; Han D; Chen H
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Syngas production from fast pyrolysis and steam gasification of mixed food waste.
    Singh D; Raizada A; Yadav S
    Waste Manag Res; 2022 Nov; 40(11):1669-1675. PubMed ID: 35475387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolysis and Oxidation of Waste Tire Oil: Analysis of Evolved Gases.
    Abdul Jameel AG; Alquaity ABS; Islam KO; Pasha AA; Khan S; Nemitallah MA; Ahmed U
    ACS Omega; 2022 Jun; 7(25):21574-21582. PubMed ID: 35785323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Utilization strategies of Chinese medicinal solid waste by pyrolysis and gasification technology].
    Long X; Guo H; Jin RY; Meng QH; Li JJ; Tang YP
    Zhongguo Zhong Yao Za Zhi; 2021 Oct; 46(19):4891-4897. PubMed ID: 34738382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.
    Alvarez J; Lopez G; Amutio M; Bilbao J; Olazar M
    Bioresour Technol; 2014 Oct; 170():132-137. PubMed ID: 25127010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.
    Li SQ; Yao Q; Wen SE; Chi Y; Yan JH
    J Air Waste Manag Assoc; 2005 Sep; 55(9):1315-26. PubMed ID: 16259427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.
    Chen W; Feng H; Shen D; Jia Y; Li N; Ying X; Chen T; Zhou Y; Guo J; Zhou M
    Sci Total Environ; 2018 Mar; 618():804-809. PubMed ID: 29046230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.