These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34846438)

  • 1. Breaking through the "3.0 eV wall" of energy band gap in mid-infrared nonlinear optical rare earth chalcogenides by charge-transfer engineering.
    Mei D; Cao W; Wang N; Jiang X; Zhao J; Wang W; Dang J; Zhang S; Wu Y; Rao P; Lin Z
    Mater Horiz; 2021 Aug; 8(8):2330-2334. PubMed ID: 34846438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rare Earth Chalcogenide Nonlinear Optical Crystal KLaGeS
    Liu Y; Li X; Wu S; Ma M; Jiang X; Wu Y; Mei D
    Inorg Chem; 2024 Jun; 63(24):10938-10942. PubMed ID: 38829776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking Through the Trade-Off Between Wide Band Gap and Large SHG Coefficient in Mercury-Based Chalcogenides for IR Nonlinear Optical Application.
    Ran MY; Zhou SH; Wei WB; Li BX; Wu XT; Lin H; Zhu QL
    Small; 2024 Feb; 20(6):e2304563. PubMed ID: 37786270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of a Rare-Earth Oxychalcogenide Nd
    Ran MY; Zhou SH; Wei WB; Li BX; Wu XT; Lin H; Zhu QL
    Small; 2023 May; 19(19):e2300248. PubMed ID: 36775973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the bottleneck of simultaneously wide band gap and large nonlinear optical coefficient by a "pore reconstruction" strategy in a salt-inclusion chalcogenide.
    Pei SM; Liu BW; Chen WF; Jiang XM; Guo GC
    Mater Horiz; 2023 Jul; 10(8):2921-2926. PubMed ID: 37158645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li
    Abudurusuli A; Huang J; Wang P; Yang Z; Pan S; Li J
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24131-24136. PubMed ID: 34302424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering a Vital Band Gap Mechanism of Pnictides.
    Chen J; Wu Q; Tian H; Jiang X; Xu F; Zhao X; Lin Z; Luo M; Ye N
    Adv Sci (Weinh); 2022 May; 9(14):e2105787. PubMed ID: 35486031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad transparency and wide band gap achieved in a magnetic infrared nonlinear optical chalcogenide by suppressing d-d transitions.
    Liu BW; Pei SM; Jiang XM; Guo GC
    Mater Horiz; 2022 May; 9(5):1513-1517. PubMed ID: 35322848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New strategy for designing promising mid-infrared nonlinear optical materials: narrowing the band gap for large nonlinear optical efficiencies and reducing the thermal effect for a high laser-induced damage threshold.
    Li SF; Jiang XM; Fan YH; Liu BW; Zeng HY; Guo GC
    Chem Sci; 2018 Jul; 9(26):5700-5708. PubMed ID: 30079178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Combination of Structure Prediction and Experiment for the Exploration of Alkali-Earth Metal-Contained Chalcopyrite-Like IR Nonlinear Optical Material.
    Wang P; Chu Y; Tudi A; Xie C; Yang Z; Pan S; Li J
    Adv Sci (Weinh); 2022 May; 9(15):e2106120. PubMed ID: 35404514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide band gap selenide infrared nonlinear optical materials A
    Wang L; Chu D; Yang Z; Li J; Pan S
    Chem Sci; 2024 May; 15(17):6577-6582. PubMed ID: 38699258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn
    Chu Y; Wang H; Abutukadi T; Li Z; Mutailipu M; Su X; Yang Z; Li J; Pan S
    Small; 2023 Nov; 19(46):e2305074. PubMed ID: 37475504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li[LiCs
    Liu BW; Jiang XM; Li BX; Zeng HY; Guo GC
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4856-4859. PubMed ID: 31654453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sr
    Wang G; Li C; Lee MH; Yao J
    Inorg Chem; 2024 Jun; 63(22):10288-10295. PubMed ID: 38780405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Novel Promising Infrared Nonlinear Optical Materials: Structural Chemistry and Balanced Performances.
    Zhou W; Guo SP
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38301117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rb
    Zhou J; Fan Z; Zhang K; Yang Z; Pan S; Li J
    Mater Horiz; 2023 Feb; 10(2):619-624. PubMed ID: 36514894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na2 BaMQ4 (M=Ge, Sn; Q=S, Se): Infrared Nonlinear Optical Materials with Excellent Performances and that Undergo Structural Transformations.
    Wu K; Yang Z; Pan S
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6713-5. PubMed ID: 27100773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ba
    Zhou AY; Zhang WL; Lin CS; Yuan FY; Pang YY; Zhang H; Cheng WD; Zhu J; Chai GL
    Inorg Chem; 2019 Mar; 58(6):3990-3999. PubMed ID: 30821449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na2ZnGe2S6: A New Infrared Nonlinear Optical Material with Good Balance between Large Second-Harmonic Generation Response and High Laser Damage Threshold.
    Li G; Wu K; Liu Q; Yang Z; Pan S
    J Am Chem Soc; 2016 Jun; 138(23):7422-8. PubMed ID: 27196357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding Optimal Mid-Infrared Nonlinear Optical Materials in Germanates by First-Principles High-Throughput Screening and Experimental Verification.
    Yu J; Zhang B; Zhang X; Wang Y; Wu K; Lee MH
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45023-45035. PubMed ID: 32924416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.