BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 34846477)

  • 41. Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink.
    Wu X; Wang S; Luo Z; Lu J; Lin K; Xie H; Wang Y; Li JZ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203673
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Self-Supporting, Conductor-Exposing, Stretchable, Ultrathin, and Recyclable Kirigami-Structured Liquid Metal Paper for Multifunctional E-Skin.
    Li X; Zhu P; Zhang S; Wang X; Luo X; Leng Z; Zhou H; Pan Z; Mao Y
    ACS Nano; 2022 Apr; 16(4):5909-5919. PubMed ID: 35312286
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Printed Self-Healing Stretchable Electronics for Bio-signal Monitoring and Intelligent Packaging.
    Zhan H; Wen B; Tian B; Zheng K; Li Q; Wu W
    Small; 2024 May; ():e2400740. PubMed ID: 38693082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D Printing Self-Healing and Self-Adhesive Elastomers for Wearable Electronics in Amphibious Environments.
    Lai J; Wang X; Zhao Q; Zhang C; Gong T; He L; Wang Z; Xia H
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16880-16892. PubMed ID: 38506556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics.
    Chen G; Wang H; Guo R; Duan M; Zhang Y; Liu J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6112-6118. PubMed ID: 31941273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics.
    You L; Shi X; Cheng J; Yang J; Xiong C; Ding Z; Zheng Z; Wang S; Wang J
    J Colloid Interface Sci; 2022 Nov; 625():197-209. PubMed ID: 35716615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hybrid 3D Printing of Soft Electronics.
    Valentine AD; Busbee TA; Boley JW; Raney JR; Chortos A; Kotikian A; Berrigan JD; Durstock MF; Lewis JA
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28875572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications.
    Khan S; Ali S; Bermak A
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30862062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-Embedded Liquid Metal Electrodes with Abrasion Resistance
    Zhang J; Ma B; Chen G; Chen Y; Xu C; Hao Q; Zhao C; Liu H
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53405-53412. PubMed ID: 36382935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices.
    Li P; Zhang Y; Zheng Z
    Adv Mater; 2019 Sep; 31(37):e1902987. PubMed ID: 31304644
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges.
    Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion.
    Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J
    Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmentally Compatible Wearable Electronics Based on Ionically Conductive Organohydrogels for Health Monitoring with Thermal Compatibility, Anti-Dehydration, and Underwater Adhesion.
    Niu Y; Liu H; He R; Luo M; Shu M; Xu F
    Small; 2021 Jun; 17(24):e2101151. PubMed ID: 34013638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics.
    Deo KA; Jaiswal MK; Abasi S; Lokhande G; Bhunia S; Nguyen TU; Namkoong M; Darvesh K; Guiseppi-Elie A; Tian L; Gaharwar AK
    ACS Nano; 2022 Jun; 16(6):8798-8811. PubMed ID: 35675588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bi-Phasic Ag-In-Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics.
    Lopes PA; Fernandes DF; Silva AF; Marques DG; de Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14552-14561. PubMed ID: 33689286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A liquid-free conducting ionoelastomer for 3D printable multifunctional self-healing electronic skin with tactile sensing capabilities.
    Wu Q; Xu Y; Han S; Zhu J; Chen A; Zhang J; Chen Y; Yang X; Huang J; Guan L
    Mater Horiz; 2023 Aug; 10(9):3610-3621. PubMed ID: 37334834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-Assembly Enabled Printable Asymmetric Self-Insulated Stretchable Conductor for Human Interface.
    Ahmed S; Momin M; Ren J; Lee H; Zhou T
    Adv Mater; 2024 Jun; 36(25):e2400082. PubMed ID: 38563579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual Surface Architectonics for Directed Self-Assembly of Ultrahigh-Resolution Electronics.
    Li L; Li W; Sun Q; Liu X; Jiu J; Tenjimbayashi M; Kanehara M; Nakayama T; Minari T
    Small; 2021 Jul; 17(26):e2101754. PubMed ID: 33988898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancing Electrical Conductivity of Stretchable Liquid Metal-Silver Composites through Direct Ink Writing.
    Zu W; Carranza HE; Bartlett MD
    ACS Appl Mater Interfaces; 2024 Apr; 16(18):23895-903. PubMed ID: 38685822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.