These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34846505)

  • 1. Programmable dynamic interfacial spinning of bioinspired microfibers with volumetric encoding.
    Zhang M; Wang S; Zhu Y; Zhu Z; Si T; Xu RX
    Mater Horiz; 2021 Jun; 8(6):1756-1768. PubMed ID: 34846505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Knot Microfibers from Piezoelectric Microfluidics.
    Yang C; Yu Y; Wang X; Shang L; Zhao Y
    Small; 2022 Feb; 18(5):e2104309. PubMed ID: 34825481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment.
    Zhao M; Liu H; Zhang X; Wang H; Tao T; Qin J
    Biomater Sci; 2021 Jul; 9(14):4880-4890. PubMed ID: 34152350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Generation of Bioinspired Spindle-knotted Graphene Microfibers for Oil Absorption.
    Wu Z; Wang J; Zhao Z; Yu Y; Shang L; Zhao Y
    Chemphyschem; 2018 Aug; 19(16):1990-1994. PubMed ID: 28929611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers.
    Shao L; Gao Q; Zhao H; Xie C; Fu J; Liu Z; Xiang M; He Y
    Small; 2018 Nov; 14(44):e1802187. PubMed ID: 30253060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Mechanically Robust and Recyclable Hydrogel Microfibers Based on Hydrogen-Bond Nanoclusters.
    Liang J; Xu J; Zheng J; Zhou L; Yang W; Liu E; Zhu Y; Zhou Q; Liu Y; Wang R; Liu Z
    Adv Sci (Weinh); 2024 Jun; 11(23):e2401278. PubMed ID: 38622885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications.
    Magnani JS; Montazami R; Hashemi NN
    Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):185-205. PubMed ID: 33940929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphic calcium alginate microfibers assembled using a programmable microfluidic field for cell regulation.
    Huang Q; Li Y; Fan L; Xin JH; Yu H; Ye D
    Lab Chip; 2020 Aug; 20(17):3158-3166. PubMed ID: 32696776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment.
    Yang Y; Liu X; Wei D; Zhong M; Sun J; Guo L; Fan H; Zhang X
    Biofabrication; 2017 Nov; 9(4):045009. PubMed ID: 28976359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamic-Crosslinking-Spinning.
    Hou K; Wang H; Lin Y; Chen S; Yang S; Cheng Y; Hsiao BS; Zhu M
    Macromol Rapid Commun; 2016 Nov; 37(22):1795-1801. PubMed ID: 27739218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-shear bioprinting of highly oriented porous hydrogel microfibers to construct anisotropic tissues.
    Shao L; Hou R; Zhu Y; Yao Y
    Biomater Sci; 2021 Oct; 9(20):6763-6771. PubMed ID: 34286720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
    Xie R; Xu P; Liu Y; Li L; Luo G; Ding M; Liang Q
    Adv Mater; 2018 Apr; 30(14):e1705082. PubMed ID: 29484717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Helical Microfibers from Microfluidics.
    Yu Y; Fu F; Shang L; Cheng Y; Gu Z; Zhao Y
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment.
    Yang Y; Sun J; Liu X; Guo Z; He Y; Wei D; Zhong M; Guo L; Fan H; Zhang X
    Regen Biomater; 2017 Oct; 4(5):299-307. PubMed ID: 29026644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Step Microfluidic Fabrication of Bioinspired Microfibers with a Spindle-Knot Structure for Fog Harvest.
    Yang T; Hou L; Fan X; Yan H; Bao F
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13756-13762. PubMed ID: 38466899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.