These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Porous Carbon Spheres Derived from Hemicelluloses for Supercapacitor Application. Wang Y; Lu C; Cao X; Wang Q; Yang G; Chen J Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806106 [TBL] [Abstract][Full Text] [Related]
3. Controlling the BET Surface Area of Porous Carbon by Using the Cd/C Ratio of a Cd-MOF Precursor and Enhancing the Capacitance by Activation with KOH. Li ZX; Zhang X; Liu YC; Zou KY; Yue ML Chemistry; 2016 Dec; 22(49):17734-17747. PubMed ID: 27778379 [TBL] [Abstract][Full Text] [Related]
4. An atom-economy route for the fabrication of α-MnS@C microball with ultrahigh supercapacitance: The significance of in-situ vulcanization. Zhang LY; Gao Y; Qu J; Li ZX J Colloid Interface Sci; 2021 Jul; 594():186-194. PubMed ID: 33756364 [TBL] [Abstract][Full Text] [Related]
5. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density. Zhang Y; Tang Z Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941 [TBL] [Abstract][Full Text] [Related]
6. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Manikandan R; Raj CJ; Moulton SE; Todorov TS; Yu KH; Kim BC Chemistry; 2021 Jan; 27(2):669-682. PubMed ID: 32700787 [TBL] [Abstract][Full Text] [Related]
7. Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties. Wang J; Zhang Q; Deng M ACS Omega; 2022 Jul; 7(26):22689-22697. PubMed ID: 35811882 [TBL] [Abstract][Full Text] [Related]
8. A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Daraghmeh A; Hussain S; Saadeddin I; Servera L; Xuriguera E; Cornet A; Cirera A Nanoscale Res Lett; 2017 Dec; 12(1):639. PubMed ID: 29288337 [TBL] [Abstract][Full Text] [Related]
9. Converting Corncob to Activated Porous Carbon for Supercapacitor Application. Yang S; Zhang K Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561807 [TBL] [Abstract][Full Text] [Related]
10. Construction and Electrochemical Properties of Solid-state Supercapacitors with Redox Additives. Wang B; Li D; Sun M; Li Y; Liang J; Jing Y; Du J; Hao J; Qin W; Wu C; Chen Y Chem Asian J; 2022 Sep; 17(18):e202200702. PubMed ID: 35871606 [TBL] [Abstract][Full Text] [Related]
11. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor. Sylla NF; Ndiaye NM; Ngom BD; Mutuma BK; Momodu D; Chaker M; Manyala N J Colloid Interface Sci; 2020 Jun; 569():332-345. PubMed ID: 32126346 [TBL] [Abstract][Full Text] [Related]
12. Hierarchically activated porous carbon derived from zinc-based fluorine containing metal-organic framework as extremely high specific capacitance and rate performance electrode material for advanced supercapacitors. Osman S; Senthil RA; Pan J; Chai L; Sun Y; Wu Y J Colloid Interface Sci; 2021 Jun; 591():9-19. PubMed ID: 33588311 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional nanoporous activated carbon electrode derived from acacia wood for high-performance supercapacitor. Hamouda HA; Abdu HI; Hu Q; Abubaker MA; Lei H; Cui S; Alduma AI; Peng H; Ma G; Lei Z Front Chem; 2022; 10():1024047. PubMed ID: 36311421 [TBL] [Abstract][Full Text] [Related]
14. In Situ Fabrication of Activated Carbon from a Bio-Waste Desmostachya bipinnata for the Improved Supercapacitor Performance. Gupta GK; Sagar P; Pandey SK; Srivastava M; Singh AK; Singh J; Srivastava A; Srivastava SK; Srivastava A Nanoscale Res Lett; 2021 May; 16(1):85. PubMed ID: 33987738 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen-Doped Hierarchical Porous Activated Carbon Derived from Paddy for High-Performance Supercapacitors. Yuan Y; Sun Y; Feng Z; Li X; Yi R; Sun W; Zhao C; Yang L Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435436 [TBL] [Abstract][Full Text] [Related]
16. Multiple-heteroatom doped porous carbons from self-activation of lignosulfonate with melamine for high performance supercapacitors. Li X; Zhang W; Wu M; Li S; Li X; Li Z Int J Biol Macromol; 2021 Jul; 183():950-961. PubMed ID: 33965494 [TBL] [Abstract][Full Text] [Related]
17. N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances. Zhang D; Xue Y; Chen J; Guo X; Yang D; Wang J; Zhang J; Zhang F; Yuan A J Nanosci Nanotechnol; 2020 May; 20(5):2728-2735. PubMed ID: 31635608 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode. Chen H; Wang G; Chen L; Dai B; Yu F Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29890629 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors. Yang V; Arumugam Senthil R; Pan J; Rajesh Kumar T; Sun Y; Liu X J Colloid Interface Sci; 2020 Nov; 579():347-356. PubMed ID: 32610207 [TBL] [Abstract][Full Text] [Related]
20. Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. Shao R; Niu J; Liang J; Liu M; Zhang Z; Dou M; Huang Y; Wang F ACS Appl Mater Interfaces; 2017 Dec; 9(49):42797-42805. PubMed ID: 29168631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]