BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34847014)

  • 1. Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification.
    Lara JE; Cheng LK; Rohrle O; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2022 May; 69(5):1758-1766. PubMed ID: 34847014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high-density EMG signals.
    Montazerin M; Rahimian E; Naderkhani F; Atashzar SF; Yanushkevich S; Mohammadi A
    Sci Rep; 2023 Jul; 13(1):11000. PubMed ID: 37419881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Hand Gesture Recognition by Decoding Motor Unit Discharges Across Multiple Motor Tasks From Surface Electromyography.
    Chen C; Yu Y; Sheng X; Meng J; Zhu X
    IEEE Trans Biomed Eng; 2023 Jul; 70(7):2058-2068. PubMed ID: 37018607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Dwivedi A; Kwon Y; McDaid AJ; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2205-2215. PubMed ID: 31443034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Muscle Selection for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Kwon Y; Dwivedi A; McDaid AJ; Liarokapis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1672-1675. PubMed ID: 30440716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.
    Matsubara T; Morimoto J
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2205-13. PubMed ID: 23475334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjacent Features for High-Density EMG Pattern Recognition.
    Donovan IM; Okada K; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5978-5981. PubMed ID: 30441698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions.
    Pelaez Murciego L; Henrich MC; Spaich EG; Dosen S
    J Neuroeng Rehabil; 2022 Jul; 19(1):78. PubMed ID: 35864513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Interaction Between Temporal and Spatial Information in Classification of EMG Signals for Myoelectric Prostheses.
    Menon R; Di Caterina G; Lakany H; Petropoulakis L; Conway BA; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1832-1842. PubMed ID: 28436879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyography Based Decoding of Dexterous, In-Hand Manipulation Motions With Temporal Multichannel Vision Transformers.
    Godoy RV; Dwivedi A; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2207-2216. PubMed ID: 35930510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks.
    Lee KH; Min JY; Byun S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power independent EMG based gesture recognition for robotics.
    Li L; Looney D; Park C; Rehman NU; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():793-6. PubMed ID: 22254430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HD-EMG Electrode Count and Feature Selection Influence on Pattern-based Movement Classification Accuracy.
    Lara J; Paskaranandavadivel N; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4787-4790. PubMed ID: 33019061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury.
    Jordanic M; Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2016 Apr; 13(1):41. PubMed ID: 27129309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topology of surface electromyogram signals: hand gesture decoding on Riemannian manifolds.
    Gowda HT; Miller LM
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38806038
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.