These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34847016)

  • 1. An Approximate Electromagnetic Model for Optimizing Wireless Charging of Biomedical Implants.
    van Oosterhout K; Paulides M; Pflug H; Beumer S; Mestrom R
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1954-1963. PubMed ID: 34847016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety Enhancement by Optimizing Frequency of Implantable Cardiac Pacemaker Wireless Charging System.
    Xiao C; Hao S; Cheng D; Liao C
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):372-383. PubMed ID: 35476569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants.
    Ibrahim A; Kiani M
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1100-1111. PubMed ID: 28055825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.
    Laakso I; Tsuchida S; Hirata A; Kamimura Y
    Phys Med Biol; 2012 Aug; 57(15):4991-5002. PubMed ID: 22801053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 10-Bit 300 kS/s Reference-Voltage Regulator Free SAR ADC for Wireless-Powered Implantable Medical Devices.
    Yang Y; Zhou J; Liu X; Goh WL
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.
    Sunohara T; Hirata A; Laakso I; Onishi T
    Phys Med Biol; 2014 Jul; 59(14):3721-35. PubMed ID: 24936747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alignment-Free Wireless Charging of Smart Garments with Embroidered Coils.
    Chang CW; Riehl P; Lin J
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.
    Gong F; Wei Z; Cong Y; Chi H; Yin B; Sun M
    Technol Health Care; 2017 Jul; 25(S1):387-397. PubMed ID: 28582927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.
    Hirata A; Ito F; Laakso I
    Phys Med Biol; 2013 Sep; 58(17):N241-9. PubMed ID: 23939244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of radiation and SAR from wireless implanted medical devices on the human body.
    Soontornpipit P
    J Med Assoc Thai; 2012 Jun; 95 Suppl 6():S189-97. PubMed ID: 23130506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety-Optimized Inductive Powering of Implantable Medical Devices: Tutorial and Comprehensive Design Guide.
    Soltani N; ElAnsary M; Xu J; Filho JS; Genov R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1354-1367. PubMed ID: 34748500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment.
    Schormans M; Valente V; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5473-6. PubMed ID: 26737530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-coil approach to reduce electromagnetic energy absorption for wirelessly powered implants.
    RamRakhyani AK; Lazzi G
    Healthc Technol Lett; 2014 Jan; 1(1):21-5. PubMed ID: 26609371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.
    Wu W; Fang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4018-21. PubMed ID: 22255221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
    Khan SR; Pavuluri SK; Cummins G; Desmulliez MPY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils.
    Ibrahim A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4800-4803. PubMed ID: 28269344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the design of efficient multi-coil telemetry system for biomedical implants.
    Ramrakhyani AK; Lazzi G
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):11-23. PubMed ID: 23853275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue.
    Mutashar S; Hannan MA; Samad SA; Hussain A
    Sensors (Basel); 2014 Jun; 14(7):11522-41. PubMed ID: 24984057
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.