BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34847025)

  • 1. CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging.
    Perdios D; Vonlanthen M; Martinez F; Arditi M; Thiran JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1154-1168. PubMed ID: 34847025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNN-Based Ultrasound Image Reconstruction for Ultrafast Displacement Tracking.
    Perdios D; Vonlanthen M; Martinez F; Arditi M; Thiran JP
    IEEE Trans Med Imaging; 2021 Mar; 40(3):1078-1089. PubMed ID: 33351759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer.
    Lu JY; Lee PY; Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1326-1336. PubMed ID: 35175918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched Convolutional Neural Networks for Receiver Channel Recovery in High-Frame-Rate Sparse-Array Ultrasound Imaging.
    Pitman WMK; Xiao D; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; 71(5):558-571. PubMed ID: 38564354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sparse Reconstruction Framework for Fourier-Based Plane-Wave Imaging.
    Besson A; Zhang M; Varray F; Liebgott H; Friboulet D; Wiaux Y; Thiran JP; Carrillo RE; Bernard O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2092-2106. PubMed ID: 27913327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning.
    ViƱals R; Thiran JP
    J Imaging; 2023 Nov; 9(12):. PubMed ID: 38132674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging.
    Wang W; He Q; Zhang Z; Feng Z
    Ultrasonics; 2022 Dec; 126():106823. PubMed ID: 35973332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.
    Lipman SL; Rouze NC; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1049-1063. PubMed ID: 28458448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference.
    Xiao D; Pitman WMK; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2849-2861. PubMed ID: 35862334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network.
    Zhang J; He Q; Xiao Y; Zheng H; Wang C; Luo J
    Med Image Anal; 2021 May; 70():102018. PubMed ID: 33711740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Plane Wave Imaging With Line-Scan-Quality Using an Ultrasound-Transfer Generative Adversarial Network.
    Zhou Z; Wang Y; Guo Y; Jiang X; Qi Y
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):943-956. PubMed ID: 31675348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DMAS Beamforming with Complementary Subset Transmit for Ultrasound Coherence-Based Power Doppler Detection in Multi-Angle Plane-Wave Imaging.
    Shen CC; Chu YC
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-D ultrafast shear-wave imaging.
    Gennisson JL; Provost J; Deffieux T; Papadacci C; Imbault M; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1059-65. PubMed ID: 26067040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues.
    Song P; Zhao H; Manduca A; Urban MW; Greenleaf JF; Chen S
    IEEE Trans Med Imaging; 2012 Sep; 31(9):1821-32. PubMed ID: 22736690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-contrast ultrafast imaging of the heart.
    Papadacci C; Pernot M; Couade M; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):288-301. PubMed ID: 24474135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A progressively dual reconstruction network for plane wave beamforming with both paired and unpaired training data.
    Gao J; Xu L; Zou Q; Zhang B; Wang D; Wan M
    Ultrasonics; 2023 Jan; 127():106833. PubMed ID: 36070635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Ultrasound Imaging Using Combined Transmissions With Cross-Coherence-Based Reconstruction.
    Zhang Y; Guo Y; Lee WN
    IEEE Trans Med Imaging; 2018 Feb; 37(2):337-348. PubMed ID: 28792890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvising limitations of DNN based ultrasound image reconstruction.
    Balendra ; Halder RS; Sahani A
    Phys Eng Sci Med; 2022 Dec; 45(4):1139-1151. PubMed ID: 36173589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pose Estimation of Ultrasound Probe Using CNN and RNN with Image Reconstruction Loss.
    Miura K; Ito K; Aoki T; Ohmiya J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust cascaded deep neural network for image reconstruction of single plane wave ultrasound RF data.
    Wasih M; Ahmad S; Almekkawy M
    Ultrasonics; 2023 Jul; 132():106981. PubMed ID: 36913830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.