These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34847032)

  • 1. Leaning-Based Interfaces Improve Ground-Based VR Locomotion in Reach-the-Target, Follow-the-Path, and Racing Tasks.
    Hashemian AM; Adhikari A; Kruijff E; Heyde MV; Riecke BE
    IEEE Trans Vis Comput Graph; 2023 Mar; 29(3):1748-1768. PubMed ID: 34847032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller.
    Hashemian AM; Adhikari A; Aguilar IA; Kruijff E; Heyde MV; Riecke BE
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):4665-4682. PubMed ID: 37200130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HeadJoystick: Improving Flying in VR Using a Novel Leaning-Based Interface.
    Hashemian AM; Lotfaliei M; Adhikari A; Kruijff E; Riecke BE
    IEEE Trans Vis Comput Graph; 2022 Apr; 28(4):1792-1809. PubMed ID: 32946395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel neurodigital interface reduces motion sickness in virtual reality.
    Dopsaj M; Tan W; Perovic V; Stajic Z; Milosavljevic N; Paessler S; Makishima T
    Neurosci Lett; 2024 Mar; 825():137692. PubMed ID: 38382798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote research on locomotion interfaces for virtual reality: Replication of a lab-based study on teleporting interfaces.
    Kelly JW; Hoover M; Doty TA; Renner A; Zimmerman M; Knuth K; Cherep LA; Gilbert SB
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2037-2046. PubMed ID: 35167459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The systematic evaluation of an embodied control interface for virtual reality.
    Bektaş K; Thrash T; van Raai MA; Künzler P; Hahnloser R
    PLoS One; 2021; 16(12):e0259977. PubMed ID: 34874931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina.
    Nie GY; Duh HB; Liu Y; Wang Y
    IEEE Trans Vis Comput Graph; 2020 Aug; 26(8):2535-2545. PubMed ID: 30668475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NaviBoard and NaviChair: Limited Translation Combined with Full Rotation for Efficient Virtual Locomotion.
    Nguyen-Vo T; Riecke BE; Stuerzlinger W; Pham DM; Kruijff E
    IEEE Trans Vis Comput Graph; 2021 Jan; 27(1):165-177. PubMed ID: 31443029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Transfer Functions and Body Parts on Body-Centric Locomotion in Virtual Reality.
    Gao B; Mai Z; Tu H; Duh HB
    IEEE Trans Vis Comput Graph; 2023 Aug; 29(8):3670-3684. PubMed ID: 35446769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immersive Virtual Reality Avatars for Embodiment Illusions in People With Mild to Borderline Intellectual Disability: User-Centered Development and Feasibility Study.
    Langener S; Klaassen R; VanDerNagel J; Heylen D
    JMIR Serious Games; 2022 Dec; 10(4):e39966. PubMed ID: 36476721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hands-free interaction in immersive virtual reality: A systematic review.
    Monteiro P; Goncalves G; Coelho H; Melo M; Bessa M
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2702-2713. PubMed ID: 33750693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of User Posture and Virtual Exercise on Impression of Locomotion During VR Observation.
    Saint-Aubert J; Cogne M; Bonan I; Launey Y; Lecuyer A
    IEEE Trans Vis Comput Graph; 2023 Aug; 29(8):3507-3518. PubMed ID: 35349443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Asymmetry Interface for Multiuser VR Experiences with Both HMD and Non-HMD Users.
    Zhang Q; Ban JS; Kim M; Byun HW; Kim CH
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33429976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential factors contributing to observed sex differences in virtual-reality-induced sickness.
    Bannigan GM; de Sousa AA; Scheller M; Finnegan DJ; Proulx MJ
    Exp Brain Res; 2024 Feb; 242(2):463-475. PubMed ID: 38170233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Evaluation of View Rotation Techniques for Seated Navigation in Virtual Reality.
    Benda B; Sargunam SP; Nourani M; Ragan ED
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):4257-4270. PubMed ID: 37030847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation for VR glasses system user experience: The influence factors of interactive operation and motion sickness.
    Yu M; Zhou R; Wang H; Zhao W
    Appl Ergon; 2019 Jan; 74():206-213. PubMed ID: 30487101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.