These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 34847366)
1. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region. Ramirez-Contreras NE; Fontanilla-Díaz CA; Pardo LE; Delgado T; Munar-Florez D; Wicke B; Ruíz-Delgado J; van der Hilst F; Garcia-Nuñez JA; Mosquera-Montoya M; Faaij APC J Environ Manage; 2022 Feb; 303():114137. PubMed ID: 34847366 [TBL] [Abstract][Full Text] [Related]
2. Projected water consumption in future global agriculture: scenarios and related impacts. Pfister S; Bayer P; Koehler A; Hellweg S Sci Total Environ; 2011 Sep; 409(20):4206-16. PubMed ID: 21840571 [TBL] [Abstract][Full Text] [Related]
3. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Egli L; Meyer C; Scherber C; Kreft H; Tscharntke T Glob Chang Biol; 2018 May; 24(5):2212-2228. PubMed ID: 29389056 [TBL] [Abstract][Full Text] [Related]
4. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Kreidenweis U; Humpenöder F; Kehoe L; Kuemmerle T; Bodirsky BL; Lotze-Campen H; Popp A Glob Chang Biol; 2018 Jul; 24(7):3199-3213. PubMed ID: 29665157 [TBL] [Abstract][Full Text] [Related]
5. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition. Graves RA; Pearson SM; Turner MG Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792 [TBL] [Abstract][Full Text] [Related]
6. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
7. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities. Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508 [TBL] [Abstract][Full Text] [Related]
8. Effects of bioenergy on biodiversity arising from land-use change and crop type. Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480 [TBL] [Abstract][Full Text] [Related]
9. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions. Schulze J; Frank K; Priess JA; Meyer MA PLoS One; 2016; 11(4):e0153862. PubMed ID: 27082742 [TBL] [Abstract][Full Text] [Related]
10. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280 [TBL] [Abstract][Full Text] [Related]
12. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Kremen C Emerg Top Life Sci; 2020 Sep; 4(2):229-240. PubMed ID: 32886114 [TBL] [Abstract][Full Text] [Related]
13. Can agricultural intensification help to conserve biodiversity? A scenario study for the African continent. Koch J; Schaldach R; Göpel J J Environ Manage; 2019 Oct; 247():29-37. PubMed ID: 31229783 [TBL] [Abstract][Full Text] [Related]
14. Agricultural intensification and ecosystem properties. Matson PA; Parton WJ; Power AG; Swift MJ Science; 1997 Jul; 277(5325):504-9. PubMed ID: 20662149 [TBL] [Abstract][Full Text] [Related]
15. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Beckmann M; Gerstner K; Akin-Fajiye M; Ceaușu S; Kambach S; Kinlock NL; Phillips HRP; Verhagen W; Gurevitch J; Klotz S; Newbold T; Verburg PH; Winter M; Seppelt R Glob Chang Biol; 2019 Jun; 25(6):1941-1956. PubMed ID: 30964578 [TBL] [Abstract][Full Text] [Related]
16. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630 [TBL] [Abstract][Full Text] [Related]
17. Biofuels, land, and water: a systems approach to sustainability. Gopalakrishnan G; Negri MC; Wang M; Wu M; Snyder SW; Lafreniere L Environ Sci Technol; 2009 Aug; 43(15):6094-100. PubMed ID: 19731724 [TBL] [Abstract][Full Text] [Related]
18. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality. Lemaire G; Gastal F; Franzluebbers A; Chabbi A Environ Manage; 2015 Nov; 56(5):1065-77. PubMed ID: 26070897 [TBL] [Abstract][Full Text] [Related]
19. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Phalan B; Onial M; Balmford A; Green RE Science; 2011 Sep; 333(6047):1289-91. PubMed ID: 21885781 [TBL] [Abstract][Full Text] [Related]
20. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential. Krupnik TJ; Schulthess U; Ahmed ZU; McDonald AJ Land use policy; 2017 Jan; 60():206-222. PubMed ID: 28050058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]