These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34847587)

  • 21. Speech perception for adult cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving speech recognition in noise.
    Gifford RH; Revit LJ
    J Am Acad Audiol; 2010; 21(7):441-51; quiz 487-8. PubMed ID: 20807480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benefits from upgrade to the CP810 sound processor for Nucleus 24 cochlear implant recipients.
    Mosnier I; Marx M; Venail F; Loundon N; Roux-Vaillard S; Sterkers O
    Eur Arch Otorhinolaryngol; 2014 Jan; 271(1):49-57. PubMed ID: 23408020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor.
    Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M
    Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of speech recognition of cochlear implant recipients using a personal digital adaptive radio frequency system.
    Wolfe J; Morais M; Schafer E; Mills E; Mülder HE; Goldbeck F; Marquis F; John A; Hudson M; Peters BR; Lianos L
    J Am Acad Audiol; 2013 Sep; 24(8):714-24. PubMed ID: 24131607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Speech Intelligibility in Various Noise Conditions with the Nucleus® 5 CP810 Sound Processor.
    Dillier N; Lai WK
    Audiol Res; 2015 Jun; 5(2):132. PubMed ID: 26779327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of input processing and type of personal frequency modulation system on speech-recognition performance of adults with cochlear implants.
    Wolfe J; Schafer E; Parkinson A; John A; Hudson M; Wheeler J; Mucci A
    Ear Hear; 2013; 34(1):52-62. PubMed ID: 22941405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex.
    Lopez-Poveda EA; Eustaquio-Martín A; Stohl JS; Wolford RD; Schatzer R; Wilson BS
    Ear Hear; 2016; 37(3):e138-48. PubMed ID: 26862711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a New Algorithm to Optimize Audibility in Cochlear Implant Recipients.
    Holden LK; Firszt JB; Reeder RM; Dwyer NY; Stein AL; Litvak LM
    Ear Hear; 2019; 40(4):990-1000. PubMed ID: 30418283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing the benefit of sound processors coupled to personal FM systems.
    Wolfe J; Schafer EC
    J Am Acad Audiol; 2008 Sep; 19(8):585-94. PubMed ID: 19323350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Improving speech comprehension using a new cochlear implant speech processor].
    Müller-Deile J; Kortmann T; Hoppe U; Hessel H; Morsnowski A
    HNO; 2009 Jun; 57(6):567-74. PubMed ID: 18685820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of different signal-processing options on speech-in-noise recognition for cochlear implant recipients with the cochlear CP810 speech processor.
    Potts LG; Kolb KA
    J Am Acad Audiol; 2014 Apr; 25(4):367-79. PubMed ID: 25126684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of directionality performances: comparison between Freedom and CP810 sound processors.
    Razza S; Albanese G; Ermoli L; Zaccone M; Cristofari E
    Otolaryngol Head Neck Surg; 2013 Oct; 149(4):608-13. PubMed ID: 23838307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Adjustment of Upper Electrical Stimulation Levels in CI Programming and the Effect on Auditory Functioning.
    Vroegop JL; Dingemanse JG; van der Schroeff MP; Metselaar RM; Goedegebure A
    Ear Hear; 2017; 38(4):e232-e240. PubMed ID: 28125445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R; Magnavita V; De Filippi R; Ventura L; Genovese E; Arslan E
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices.
    Spahr AJ; Dorman MF
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):624-8. PubMed ID: 15148187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SoftVoice Improves Speech Recognition and Reduces Listening Effort in Cochlear Implant Users.
    Stronks HC; Apperloo E; Koning R; Briaire JJ; Frijns JHM
    Ear Hear; 2021; 42(2):381-392. PubMed ID: 32796352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intra- and intersubject comparison of cochlear implant systems using the Esprit and the Tempo+ behind-the-ear speech processor.
    Kompis M; Jenk M; Vischer MW; Seifert E; Häusler R
    Int J Audiol; 2002 Dec; 41(8):555-62. PubMed ID: 12477176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benefits of upgrading to the Nucleus
    Todorov MJ; Galvin KL
    Cochlear Implants Int; 2018 Jul; 19(4):210-215. PubMed ID: 29566583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.