BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34847734)

  • 21. HiG2Vec: hierarchical representations of Gene Ontology and genes in the Poincaré ball.
    Kim J; Kim D; Sohn KA
    Bioinformatics; 2021 Sep; 37(18):2971-2980. PubMed ID: 33760022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts.
    Jiang S; Wu W; Tomita N; Ganoe C; Hassanpour S
    J Biomed Inform; 2020 Nov; 111():103581. PubMed ID: 33010425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GOGCN: Graph Convolutional Network on Gene Ontology for Functional Similarity Analysis of Genes.
    Tian Z; Fang H; Teng Z; Ye Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1053-1064. PubMed ID: 35687647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlating information contents of gene ontology terms to infer semantic similarity of gene products.
    Gan M
    Comput Math Methods Med; 2014; 2014():891842. PubMed ID: 24963342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the significance of protein functional similarity based on gene ontology.
    Konopka BM; Golda T; Kotulska M
    J Comput Biol; 2014 Nov; 21(11):809-22. PubMed ID: 25188814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example.
    Vogt L
    J Biomed Semantics; 2021 Nov; 12(1):20. PubMed ID: 34823588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-domain knowledge graph embeddings for gene-disease association prediction.
    Nunes S; Sousa RT; Pesquita C
    J Biomed Semantics; 2023 Aug; 14(1):11. PubMed ID: 37580835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network.
    Su Y; Hu Z; Wang F; Bin Y; Zheng C; Li H; Chen H; Zeng X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38145949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological applications of knowledge graph embedding models.
    Mohamed SK; Nounu A; Nováček V
    Brief Bioinform; 2021 Mar; 22(2):1679-1693. PubMed ID: 32065227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HeGCL: Advance Self-Supervised Learning in Heterogeneous Graph-Level Representation.
    Shi G; Zhu Y; Liu JK; Li X
    IEEE Trans Neural Netw Learn Syst; 2023 May; PP():. PubMed ID: 37227906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks.
    Zhao BW; Su XR; Yang Y; Li DX; Li GD; Hu PW; Zhao YG; Hu L
    Methods; 2023 Dec; 220():106-114. PubMed ID: 37972913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semantic similarity and machine learning with ontologies.
    Kulmanov M; Smaili FZ; Gao X; Hoehndorf R
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33049044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-label literature classification based on the Gene Ontology graph.
    Jin B; Muller B; Zhai C; Lu X
    BMC Bioinformatics; 2008 Dec; 9():525. PubMed ID: 19063730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Latent neighborhood-based heterogeneous graph representation.
    Xiao Y; Quan P; Lei M; Niu L
    Neural Netw; 2022 Oct; 154():413-424. PubMed ID: 35952539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CrowdGO: Machine learning and semantic similarity guided consensus Gene Ontology annotation.
    Reijnders MJMF; Waterhouse RM
    PLoS Comput Biol; 2022 May; 18(5):e1010075. PubMed ID: 35560159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms.
    Zhao C; Wang Z
    Sci Rep; 2018 Oct; 8(1):15107. PubMed ID: 30305653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relations as patterns: bridging the gap between OBO and OWL.
    Hoehndorf R; Oellrich A; Dumontier M; Kelso J; Rebholz-Schuhmann D; Herre H
    BMC Bioinformatics; 2010 Aug; 11():441. PubMed ID: 20807438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.