These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34847740)

  • 1. ISFMDA: Learning Interactions of Selected Features-Based Method for Predicting Potential MicroRNA-Disease Associations.
    Chen X; Jiang Z
    J Comput Biol; 2021 Dec; 28(12):1219-1227. PubMed ID: 34847740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis.
    Li J; Liu Y; Zhang Z; Liu B; Wang Y
    Biomed Res Int; 2020; 2020():6248686. PubMed ID: 33354569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hessian Regularized [Formula: see text]-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction.
    Han GS; Gao Q; Peng LZ; Tang J
    Interdiscip Sci; 2024 Mar; 16(1):176-191. PubMed ID: 38099958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ANMDA: anti-noise based computational model for predicting potential miRNA-disease associations.
    Chen XJ; Hua XY; Jiang ZR
    BMC Bioinformatics; 2021 Jul; 22(1):358. PubMed ID: 34215183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features.
    Yan C; Duan G; Li N; Zhang L; Wu FX; Wang J
    Bioinformatics; 2022 Apr; 38(8):2226-2234. PubMed ID: 35150255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of miRNA-disease associations by neural network-based deep matrix factorization.
    Qu Q; Chen X; Ning B; Zhang X; Nie H; Zeng L; Chen H; Fu X
    Methods; 2023 Apr; 212():1-9. PubMed ID: 36813017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder.
    Liu W; Lin H; Huang L; Peng L; Tang T; Zhao Q; Yang L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WBNPMD: weighted bipartite network projection for microRNA-disease association prediction.
    Xie G; Fan Z; Sun Y; Wu C; Ma L
    J Transl Med; 2019 Sep; 17(1):322. PubMed ID: 31547811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations.
    Wang SH; Wang CC; Huang L; Miao LY; Chen X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo
    Meher PK; Begam S; Sahu TK; Gupta A; Kumar A; Kumar U; Rao AR; Singh KP; Dhankher OP
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MLMDA: a machine learning approach to predict and validate MicroRNA-disease associations by integrating of heterogenous information sources.
    Zheng K; You ZH; Wang L; Zhou Y; Li LP; Li ZW
    J Transl Med; 2019 Aug; 17(1):260. PubMed ID: 31395072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder.
    Wang S; Lin B; Zhang Y; Qiao S; Wang F; Wu W; Ren C
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A random forest based computational model for predicting novel lncRNA-disease associations.
    Yao D; Zhan X; Zhan X; Kwoh CK; Li P; Wang J
    BMC Bioinformatics; 2020 Mar; 21(1):126. PubMed ID: 32216744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMCMDA: neural multicategory MiRNA-disease association prediction.
    Wang J; Li J; Yue K; Wang L; Ma Y; Li Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33778850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Disease Related microRNA Based on Similarity and Topology.
    Chen Z; Wang X; Gao P; Liu H; Song B
    Cells; 2019 Nov; 8(11):. PubMed ID: 31703479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Prediction of miRNA-Disease Associations Based on Matrix Completion with Network Regularization.
    Ha J; Park C; Park C; Park S
    Cells; 2020 Apr; 9(4):. PubMed ID: 32260218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPMDA: Edge Perturbation Based Method for miRNA-Disease Association Prediction.
    Dong Y; Sun Y; Qin C; Zhu W
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2170-2175. PubMed ID: 31514148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.