These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 34847768)
1. Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport. Li G; Liu H; Müller UK; Voesenek CJ; van Leeuwen JL Proc Biol Sci; 2021 Dec; 288(1964):20211601. PubMed ID: 34847768 [TBL] [Abstract][Full Text] [Related]
2. Disentangling the functional roles of morphology and motion in the swimming of fish. Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068 [TBL] [Abstract][Full Text] [Related]
3. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. Shelton RM; Thornycroft PJ; Lauder GV J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649 [TBL] [Abstract][Full Text] [Related]
4. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881 [TBL] [Abstract][Full Text] [Related]
5. Convergence of undulatory swimming kinematics across a diversity of fishes. Di Santo V; Goerig E; Wainwright DK; Akanyeti O; Liao JC; Castro-Santos T; Lauder GV Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34853171 [TBL] [Abstract][Full Text] [Related]
6. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. Jusufi A; Vogt DM; Wood RJ; Lauder GV Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079 [TBL] [Abstract][Full Text] [Related]
7. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905 [TBL] [Abstract][Full Text] [Related]
8. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Borazjani I; Sotiropoulos F J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366 [TBL] [Abstract][Full Text] [Related]
9. Analytical insights into optimality and resonance in fish swimming. Kohannim S; Iwasaki T J R Soc Interface; 2014 Mar; 11(92):20131073. PubMed ID: 24430125 [TBL] [Abstract][Full Text] [Related]
11. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. Wolf Z; Jusufi A; Vogt DM; Lauder GV Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908 [TBL] [Abstract][Full Text] [Related]
12. Passive robotic models of propulsion by the bodies and caudal fins of fish. Lauder GV; Flammang B; Alben S Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513 [TBL] [Abstract][Full Text] [Related]
13. Tuna robotics: hydrodynamics of rapid linear accelerations. Thandiackal R; White CH; Bart-Smith H; Lauder GV Proc Biol Sci; 2021 Feb; 288(1945):20202726. PubMed ID: 33593180 [TBL] [Abstract][Full Text] [Related]
14. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion. Xiong G; Lauder GV Zoology (Jena); 2014 Aug; 117(4):269-81. PubMed ID: 24925455 [TBL] [Abstract][Full Text] [Related]
15. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery. Wiens AJ; Nahon M Bioinspir Biomim; 2012 Dec; 7(4):046016. PubMed ID: 23135166 [TBL] [Abstract][Full Text] [Related]
16. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry. Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818 [TBL] [Abstract][Full Text] [Related]
17. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes. Lucas KN; Lauder GV; Tytell ED Proc Natl Acad Sci U S A; 2020 May; 117(19):10585-10592. PubMed ID: 32341168 [TBL] [Abstract][Full Text] [Related]