BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34847791)

  • 1. A feedback control architecture for bioelectronic devices with applications to wound healing.
    Hosseini Jafari B; Zlobina K; Marquez G; Jafari M; Selberg J; Jia M; Rolandi M; Gomez M
    J R Soc Interface; 2021 Dec; 18(185):20210497. PubMed ID: 34847791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pro-reparative bioelectronic device for controlled delivery of ions and biomolecules.
    Asefifeyzabadi N; Nguyen T; Li H; Zhu K; Yang HY; Baniya P; Medina Lopez A; Gallegos A; Hsieh HC; Dechiraju H; Hernandez C; Schorger K; Recendez C; Tebyani M; Selberg J; Luo L; Muzzy E; Hsieh C; Barbee A; Orozco J; Alhamo MA; Levin M; Aslankoohi E; Gomez M; Zhao M; Teodorescu M; Isseroff RR; Rolandi M
    Wound Repair Regen; 2024 May; ():. PubMed ID: 38794912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivering biochemicals with precision using bioelectronic devices enhanced with feedback control.
    Marquez G; Dechiraju H; Baniya P; Li H; Tebyani M; Pansodtee P; Jafari M; Barbee A; Orozco J; Teodorescu M; Rolandi M; Gomez M
    PLoS One; 2024; 19(5):e0298286. PubMed ID: 38743674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
    Chen M; Wu QX; Cui RX
    ISA Trans; 2013 Mar; 52(2):198-206. PubMed ID: 23127620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system for bioelectronic delivery of treatment directed toward wound healing.
    Baniya P; Tebyani M; Asefifeyzabadi N; Nguyen T; Hernandez C; Zhu K; Li H; Selberg J; Hsieh HC; Pansodtee P; Yang HY; Recendez C; Keller G; Hee WS; Aslankoohi E; Isseroff RR; Zhao M; Gomez M; Rolandi M; Teodorescu M
    Sci Rep; 2023 Sep; 13(1):14766. PubMed ID: 37679425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.
    Wang J; Zong Q; Su R; Tian B
    ISA Trans; 2014 May; 53(3):690-8. PubMed ID: 24534328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular implementation of a quasi sliding mode feedback controller based on DNA strand displacement reactions.
    Sawlekar R; Montefusco F; Kulkarni V; Bates DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():949-52. PubMed ID: 26736420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding mode closed-loop control of FES: controlling the shank movement.
    Jezernik S; Wassink RG; Keller T
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):263-72. PubMed ID: 14765699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Design of Hyperstable Feedback Controllers for a Class of Parameterized Nonlinearities. Two Application Examples for Controlling Epidemic Models.
    De la Sen M
    Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31357623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast converging robust controller using adaptive second order sliding mode.
    Mondal S; Mahanta C
    ISA Trans; 2012 Nov; 51(6):713-21. PubMed ID: 22898501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Nonlinear Tracking Control with Exponential Convergence Using Contraction Metrics and Disturbance Estimation.
    Zhao P; Guo Z; Hovakimyan N
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity.
    Liu Z; Lai G; Zhang Y; Chen CL
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1789-802. PubMed ID: 25915964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete sliding mode control for robust tracking of higher order delay time systems with experimental application.
    Khandekar AA; Malwatkar GM; Patre BM
    ISA Trans; 2013 Jan; 52(1):36-44. PubMed ID: 23036871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlinear regression model-based predictive control algorithm.
    Dubay R; Abu-Ayyad M; Hernandez JM
    ISA Trans; 2009 Apr; 48(2):180-9. PubMed ID: 19144334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel predictive control algorithm and robust stability criteria for integrating processes.
    Zhang B; Yang W; Zong H; Wu Z; Zhang W
    ISA Trans; 2011 Jul; 50(3):454-60. PubMed ID: 21353217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.
    Jagannathan S; He P
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2073-87. PubMed ID: 19054732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities and challenges for developing closed-loop bioelectronic medicines.
    Ganzer PD; Sharma G
    Neural Regen Res; 2019 Jan; 14(1):46-50. PubMed ID: 30531069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing a robust minimum variance controller using discrete slide mode controller approach.
    Alipouri Y; Poshtan J
    ISA Trans; 2013 Mar; 52(2):291-9. PubMed ID: 23174280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing and validating a robust adaptive neuromodulation algorithm for closed-loop control of brain states.
    Fang H; Yang Y
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35576912
    [No Abstract]   [Full Text] [Related]  

  • 20. Global tracking control of strict-feedback systems using neural networks.
    Huang JT
    IEEE Trans Neural Netw Learn Syst; 2012 Nov; 23(11):1714-25. PubMed ID: 24808067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.