BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34848032)

  • 1. Computer optimization of conductive gels for electrochemotherapy.
    Lopes LB; Pintarelli GB; Dos Santos CSF; Suzuki DOH
    Med Eng Phys; 2021 Dec; 98():133-139. PubMed ID: 34848032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of commercial conductive gels and their application to increase the safety of electrochemotherapy treatment.
    Pintarelli GB; Berkenbrock JA; Rassele A; Rangel MMM; Suzuki DOH
    Med Eng Phys; 2019 Dec; 74():99-105. PubMed ID: 31564500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemotherapy treatment safety under parallel needle deflection.
    Andrade DLLS; Guedert R; Pintarelli GB; Rangel MMM; Oliveira KD; Quadros PG; Suzuki DOH
    Sci Rep; 2022 Feb; 12(1):2766. PubMed ID: 35177779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies.
    Ivorra A; Al-Sakere B; Rubinsky B; Mir LM
    Phys Med Biol; 2008 Nov; 53(22):6605-18. PubMed ID: 18978447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Gel Increases the Small Tumor Treatment With Electrochemotherapy Using Needle Electrodes.
    Suzuki DO; Marques CM; Rangel MM
    Artif Organs; 2016 Jul; 40(7):705-11. PubMed ID: 26527475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemotherapy Effectiveness Loss due to Electric Field Indentation between Needle Electrodes: A Numerical Study.
    Berkenbrock JA; Machado RG; Suzuki DOH
    J Healthc Eng; 2018; 2018():6024635. PubMed ID: 30057732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of electric field distribution in tissues during electroporation.
    Corovic S; Lackovic I; Sustaric P; Sustar T; Rodic T; Miklavcic D
    Biomed Eng Online; 2013 Feb; 12():16. PubMed ID: 23433433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue.
    Garcia PA; Davalos RV; Miklavcic D
    PLoS One; 2014; 9(8):e103083. PubMed ID: 25115970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.
    Sel D; Lebar AM; Miklavcic D
    IEEE Trans Biomed Eng; 2007 May; 54(5):773-81. PubMed ID: 17518273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric optimization of electric field strength for cancer electrochemotherapy on a chip-based model.
    Zhao D; Wu M; Huang D; Liang Z; Wei Z; Li Z
    Theranostics; 2018; 8(2):358-368. PubMed ID: 29290813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.
    Mahnič-Kalamiza S; Kotnik T; Miklavčič D
    BMC Med Educ; 2012 Oct; 12():102. PubMed ID: 23107609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroporation of the Liver: More Than 2 Concurrently Active, Curved Electrodes Allow New Concepts for Irreversible Electroporation and Electrochemotherapy.
    Ritter A; Bruners P; Isfort P; Barabasch A; Pfeffer J; Schmitz J; Pedersoli F; Baumann M
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818809994. PubMed ID: 30411673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Musa acuminata as electroporation model.
    Andrade DLLS; Pintarelli GB; Rosa JV; Paro IB; Pagano PJT; Silva JCN; Suzuki DOH
    Bioelectrochemistry; 2023 Dec; 154():108549. PubMed ID: 37639773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemotherapy Using Doxorubicin and Nanosecond Electric Field Pulses: A Pilot in Vivo Study.
    Novickij V; Malyško V; Želvys A; Balevičiūtė A; Zinkevičienė A; Novickij J; Girkontaitė I
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33050300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EView: An electric field visualization web platform for electroporation-based therapies.
    Perera-Bel E; Yagüe C; Mercadal B; Ceresa M; Beitel-White N; Davalos RV; Ballester MAG; Ivorra A
    Comput Methods Programs Biomed; 2020 Dec; 197():105682. PubMed ID: 32795723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment.
    Pintar M; Langus J; Edhemović I; Brecelj E; Kranjc M; Sersa G; Šuštar T; Rodič T; Miklavčič D; Kotnik T; Kos B
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818790510. PubMed ID: 30089424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral Mucosa Model for Electrochemotherapy Treatment of Dog Mouth Cancer: Ex Vivo, In Silico, and In Vivo Experiments.
    Suzuki DOH; Berkenbrock JA; Frederico MJS; Silva FRMB; Rangel MMM
    Artif Organs; 2018 Mar; 42(3):297-304. PubMed ID: 29027689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An e-learning application on electrochemotherapy.
    Corovic S; Bester J; Miklavcic D
    Biomed Eng Online; 2009 Oct; 8():26. PubMed ID: 19843322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Tissue Inhomogeneity in Soft Tissue Sarcomas: From Real Cases to Numerical and Experimental Models.
    Campana LG; Bullo M; Di Barba P; Dughiero F; Forzan M; Mognaschi ME; Sgarbossa P; Tosi AL; Bernardis A; Sieni E
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818789693. PubMed ID: 30045667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pulse repetition rate in static electrochemotherapy models.
    Guedert R; Brasil Pintarelli G; Mena Barreto Silva FR; Ota Hisayasu Suzuki D
    Bioelectrochemistry; 2023 Oct; 153():108499. PubMed ID: 37413821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.