BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34848057)

  • 1. Surfactant-induced wettability reversal on oil-wet calcite surfaces: Experimentation and molecular dynamics simulations with scaled-charges.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Mar; 609():890-900. PubMed ID: 34848057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Aug; 619():168-178. PubMed ID: 35381485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Surfactant Charge and Molecular Structure on Wettability Alteration of Calcite: Insights from Molecular Dynamics Simulations.
    Kubelka J; Bai S; Piri M
    J Phys Chem B; 2021 Feb; 125(4):1293-1305. PubMed ID: 33475371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Effect of Nanofluids and Surfactants on Heavy Oil Recovery and Oil-Wet Calcite Wettability.
    Hou J; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A positively charged calcite surface model for molecular dynamics studies of wettability alteration.
    Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2020 Jun; 569():128-139. PubMed ID: 32105900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wettability Alteration and Adsorption of Mixed Nonionic and Anionic Surfactants on Carbonates.
    Das S; Katiyar A; Rohilla N; Nguyen QP; Bonnecaze RT
    Langmuir; 2020 Dec; 36(50):15410-15422. PubMed ID: 33290072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability Reversal on Dolomite Surfaces by Divalent Ions and Surfactants: An Experimental and Molecular Dynamics Simulation Study.
    Bai S; Kubelka J; Piri M
    Langmuir; 2021 Jun; 37(22):6641-6649. PubMed ID: 34027662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wettability Alteration of Calcite by Nonionic Surfactants.
    Das S; Nguyen Q; Patil PD; Yu W; Bonnecaze RT
    Langmuir; 2018 Sep; 34(36):10650-10658. PubMed ID: 30095917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Adsorption Behavior of Surfactants on Carbonate Surface by Experiment and Molecular Dynamics Simulation.
    Hou J; Lin S; Du J; Sui H
    Front Chem; 2022; 10():847986. PubMed ID: 35464211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of wettability alteration using surfactants in carbonate reservoirs.
    Yao Y; Wei M; Kang W
    Adv Colloid Interface Sci; 2021 Aug; 294():102477. PubMed ID: 34242888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability alteration of oil-wet carbonate by silica nanofluid.
    Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S
    J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Stabilized Alkylbenzene Sulfonate Surfactants on the Nanoscale with Water-Wet and Oil-Wet Carbonate Surfaces under High-Salinity and High-Temperature Conditions: A QCM-D Study.
    Kawelah MR; Gizzatov A; Jung D; Abdel-Fattah AI
    ACS Omega; 2020 May; 5(19):10838-10846. PubMed ID: 32455204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal scaling of adsorption of nonionic surfactants on carbonates using cloud point temperatures.
    Das S; Katiyar A; Rohilla N; Nguyen Q; Bonnecaze RT
    J Colloid Interface Sci; 2020 Oct; 577():431-440. PubMed ID: 32505003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel.
    Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W
    Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation on Spontaneous Imbibition of Surfactant Mixtures in Low Permeability Reservoirs.
    Wang H; You Q; Zhang T; Adenutsi CD; Gao M
    ACS Omega; 2023 Apr; 8(15):14171-14176. PubMed ID: 37091392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Investigation of the Synergistic Effect of Two Nonionic Surfactants on Interfacial Properties and Their Application in Enhanced Oil Recovery.
    Saw RK; Sinojiya D; Pillai P; Prakash S; Mandal A
    ACS Omega; 2023 Apr; 8(13):12445-12455. PubMed ID: 37033838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.
    Zhao J; Wen D
    RSC Adv; 2017 Aug; 7(66):41391-41398. PubMed ID: 29308190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of wettability alteration, IFT reduction, and injection schemes during surfactant/smart water flooding for EOR application.
    Noorizadeh Bajgirani SS; Saeedi Dehaghani AH
    Sci Rep; 2023 Jul; 13(1):11362. PubMed ID: 37443172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-Scale Study of Wettability Alteration and Fluid Flow in Propped Fractures of Ultra-Tight Carbonates.
    Elkhatib O; Xie Y; Mohamed A; Arshadi M; Piri M; Goual L
    Langmuir; 2023 Feb; 39(5):1870-1884. PubMed ID: 36693109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.