BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34848143)

  • 1. Physiological functions of malate shuttles in plants and algae.
    Dao O; Kuhnert F; Weber APM; Peltier G; Li-Beisson Y
    Trends Plant Sci; 2022 May; 27(5):488-501. PubMed ID: 34848143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malate valves: old shuttles with new perspectives.
    Selinski J; Scheibe R
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1(Suppl Suppl 1):21-30. PubMed ID: 29933514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of metabolite shuttles for export of chloroplast and mitochondrial ATP and NADPH increases the cytosolic NADH:NAD
    Moreno-García B; López-Calcagno PE; Raines CA; Sweetlove LJ
    J Plant Physiol; 2022 Jan; 268():153578. PubMed ID: 34911031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport.
    Pastore D; Di Pede S; Passarella S
    Plant Physiol; 2003 Dec; 133(4):2029-39. PubMed ID: 14671011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD
    Lim SL; Voon CP; Guan X; Yang Y; Gardeström P; Lim BL
    Nat Commun; 2020 Jun; 11(1):3238. PubMed ID: 32591540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacity of the malate/oxaloacetate shuttle for transfer of reducing equivalents across the envelope of leaf chloroplasts.
    Giersch C
    Arch Biochem Biophys; 1982 Dec; 219(2):379-87. PubMed ID: 7165309
    [No Abstract]   [Full Text] [Related]  

  • 8. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae.
    Al-Saryi NA; Al-Hejjaj MY; van Roermund CWT; Hulmes GE; Ekal L; Payton C; Wanders RJA; Hettema EH
    Sci Rep; 2017 Sep; 7(1):11868. PubMed ID: 28928432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants.
    Igamberdiev AU; Bykova NV
    Free Radic Biol Med; 2018 Jul; 122():74-85. PubMed ID: 29355740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana.
    Vishwakarma A; Bashyam L; Senthilkumaran B; Scheibe R; Padmasree K
    Plant Physiol Biochem; 2014 Aug; 81():44-53. PubMed ID: 24560882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.
    Atlante A; Seccia TM; De Bari L; Marra E; Passarella S
    Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C4 acid decarboxylation and photosynthesis in bundle sheath cells of NAD-malic enzyme-type C4 plants: mechanism and the role of malate and orthophosphate.
    Furbank RT; Agostino A; Hatch MD
    Arch Biochem Biophys; 1990 Feb; 276(2):374-81. PubMed ID: 2306101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V
    Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The malate-aspartate shuttle is important for de novo serine biosynthesis.
    Broeks MH; Meijer NWF; Westland D; Bosma M; Gerrits J; German HM; Ciapaite J; van Karnebeek CDM; Wanders RJA; Zwartkruis FJT; Verhoeven-Duif NM; Jans JJM
    Cell Rep; 2023 Sep; 42(9):113043. PubMed ID: 37647199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxaloacetate uptake into rat brain mitochondria and reconstruction of the malate/oxaloacetate shuttle.
    Passarella S; Barile M; Atlante A; Quagliariello E
    Biochem Biophys Res Commun; 1984 Mar; 119(3):1039-46. PubMed ID: 6712663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart.
    Scholz TD; Koppenhafer SL
    Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.