BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34848182)

  • 1. Thermal boldness: Volunteer exploration of extreme temperatures in fruit flies.
    Navas CA; Agudelo-Cantero GA; Loeschcke V
    J Insect Physiol; 2022 Jan; 136():104330. PubMed ID: 34848182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior.
    Rajpurohit S; Schmidt PS
    Fly (Austin); 2016 Oct; 10(4):149-61. PubMed ID: 27230726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental temperature affects thermal dependence of locomotor activity in Drosophila.
    Klepsatel P; Gáliková M
    J Therm Biol; 2022 Jan; 103():103153. PubMed ID: 35027204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Costs and benefits of cold acclimation in field-released Drosophila.
    Kristensen TN; Hoffmann AA; Overgaard J; Sørensen JG; Hallas R; Loeschcke V
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):216-21. PubMed ID: 18162547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Living in a trash can: turbulent convective flows impair
    Ortega-Jiménez VM; Combes SA
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30355810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Automated Method to Determine the Performance of Drosophila in Response to Temperature Changes in Space and Time.
    Soto-Padilla A; Ruijsink R; Span M; van Rijn H; Billeter JC
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mortality from desiccation contributes to a genotype-temperature interaction for cold survival in Drosophila melanogaster.
    Kobey RL; Montooth KL
    J Exp Biol; 2013 Apr; 216(Pt 7):1174-82. PubMed ID: 23197100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive fitness of
    Klepsatel P; Girish TN; Dircksen H; Gáliková M
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31064855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermosensation and Temperature Preference: From Molecules to Neuronal Circuits in
    Chiang MH; Lin YC; Wu T; Wu CL
    Cells; 2023 Dec; 12(24):. PubMed ID: 38132112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flies developed small bodies and small cells in warm and in thermally fluctuating environments.
    Czarnoleski M; Cooper BS; Kierat J; Angilletta MJ
    J Exp Biol; 2013 Aug; 216(Pt 15):2896-901. PubMed ID: 23619414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster.
    Shiehzadegan S; Le Vinh Thuy J; Szabla N; Angilletta MJ; VandenBrooks JM
    PLoS One; 2017; 12(5):e0177827. PubMed ID: 28542380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beetle, Dendroides canadensis, antifreeze proteins increased high temperature survivorship in transgenic fruit flies, Drosophila melanogaster.
    Vu HM; Pennoyer JE; Ruiz KR; Portmann P; Duman JG
    J Insect Physiol; 2019 Jan; 112():68-72. PubMed ID: 30562493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-temperature stress and the evolution of thermal resistance in Drosophila.
    Loeschcke V; Krebs RA; Dahlgaard J; Michalak P
    EXS; 1997; 83():175-90. PubMed ID: 9342849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster.
    Overgaard J; Sørensen JG
    Cryobiology; 2008 Apr; 56(2):159-62. PubMed ID: 18295194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermosensory perception regulates speed of movement in response to temperature changes in
    Soto-Padilla A; Ruijsink R; Sibon OCM; van Rijn H; Billeter JC
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29650755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster.
    Loeschcke V; Kristensen TN; Norry FM
    J Insect Physiol; 2011 Sep; 57(9):1227-31. PubMed ID: 21708160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.