BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34848188)

  • 1. Effect of cryoprotectants on rat kidney decellularization by freeze-thaw process.
    Yang J; Xu Y; Luo S; Dang H; Cao M
    Cryobiology; 2022 Apr; 105():71-82. PubMed ID: 34848188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of organ extracellular matrix using a freeze-thaw cycle employing extracellular cryoprotectants.
    Pulver ; Shevtsov A; Leybovich B; Artyuhov I; Maleev Y; Peregudov A
    Cryo Letters; 2014; 35(5):400-6. PubMed ID: 25397955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of freeze-thaw with detergents: A promising approach to the decellularization of porcine carotid arteries.
    Cheng J; Wang C; Gu Y
    Biomed Mater Eng; 2019; 30(2):191-205. PubMed ID: 30741667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing/Thawing without Cryoprotectant Damages Native but not Decellularized Porcine Renal Tissue.
    Poornejad N; Frost TS; Scott DR; Elton BB; Reynolds PR; Roeder BL; Cook AD
    Organogenesis; 2015; 11(1):30-45. PubMed ID: 25730294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study.
    Roth SP; Glauche SM; Plenge A; Erbe I; Heller S; Burk J
    BMC Biotechnol; 2017 Feb; 17(1):13. PubMed ID: 28193263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decellularization of Large Tendon Specimens: Combination of Manually Performed Freeze-Thaw Cycles and Detergent Treatment.
    Roth SP; Erbe I; Burk J
    Methods Mol Biol; 2018; 1577():227-237. PubMed ID: 28702884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and preservation of vascular architectures in decellularized whole rat kidneys.
    Feng H; Xu Y; Luo S; Dang H; Liu K; Sun WQ
    Cryobiology; 2020 Aug; 95():72-79. PubMed ID: 32526236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-thaw cycles enhance decellularization of large tendons.
    Burk J; Erbe I; Berner D; Kacza J; Kasper C; Pfeiffer B; Winter K; Brehm W
    Tissue Eng Part C Methods; 2014 Apr; 20(4):276-84. PubMed ID: 23879725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability.
    Zouhair S; Aguiari P; Iop L; Vásquez-Rivera A; Filippi A; Romanato F; Korossis S; Wolkers WF; Gerosa G
    Acta Biomater; 2019 Jan; 84():208-221. PubMed ID: 30342283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture.
    Lu H; Hoshiba T; Kawazoe N; Chen G
    J Biomed Mater Res A; 2012 Sep; 100(9):2507-16. PubMed ID: 22623317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae.
    Momose Y; Matsumoto R; Maruyama A; Yamaoka M
    Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decellularization Methods for Scaffold Fabrication.
    Gupta SK; Mishra NC; Dhasmana A
    Methods Mol Biol; 2018; 1577():1-10. PubMed ID: 28550502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation of DNA Origami Nanostructures.
    Xin Y; Kielar C; Zhu S; Sikeler C; Xu X; Möser C; Grundmeier G; Liedl T; Heuer-Jungemann A; Smith DM; Keller A
    Small; 2020 Apr; 16(13):e1905959. PubMed ID: 32130783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation.
    Xing Q; Yates K; Tahtinen M; Shearier E; Qian Z; Zhao F
    Tissue Eng Part C Methods; 2015 Jan; 21(1):77-87. PubMed ID: 24866751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Lab Manufacturing of Decellularized Rat Renal Scaffold for Kidney Bioengineering.
    Peloso A; Citro A; Corradetti V; Brambilla S; Oldani G; Calabrese F; Dominioni T; Maestri M; Cobianchi L
    Methods Mol Biol; 2018; 1577():103-110. PubMed ID: 29159728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic freeze-thaw grinding to decellularize meniscus for fabricating porous, elastic scaffolds.
    Ding Y; Zhang W; Sun B; Mo X; Wu J
    J Biomed Mater Res A; 2022 Nov; 110(11):1824-1839. PubMed ID: 36082975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Application of Cryoprotectants.
    Rajan R; Matsumura K
    Adv Exp Med Biol; 2018; 1081():339-354. PubMed ID: 30288718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues.
    Teo KY; DeHoyos TO; Dutton JC; Grinnell F; Han B
    Biomaterials; 2011 Aug; 32(23):5380-90. PubMed ID: 21549425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on cryopreservation of tissue engineered tendon by vitrification].
    Liu C; Qin T; Wang Z; Chen X; Yang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):847-51. PubMed ID: 19813624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different decellularization protocols on reendothelialization with human cells for a perfused renal bioscaffold of the rat.
    Sauter J; Degenhardt H; Tuebel J; Foehr P; Knoeckel P; Florian K; Charitou F; Burgkart R; Schmitt A
    BMC Biotechnol; 2023 Mar; 23(1):8. PubMed ID: 36927344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.