These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34848727)

  • 21. Recent progress in design of protein-based fluorescent biosensors and their cellular applications.
    Tamura T; Hamachi I
    ACS Chem Biol; 2014 Dec; 9(12):2708-17. PubMed ID: 25317665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging.
    Ai HW; Olenych SG; Wong P; Davidson MW; Campbell RE
    BMC Biol; 2008 Mar; 6():13. PubMed ID: 18325109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The photochemistry of fluorescent proteins: implications for their biological applications.
    Seward HE; Bagshaw CR
    Chem Soc Rev; 2009 Oct; 38(10):2842-51. PubMed ID: 19771331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Far-Red Emitting Fluorescent Chemogenetic Reporter for In Vivo Molecular Imaging.
    Li C; Tebo AG; Thauvin M; Plamont MA; Volovitch M; Morin X; Vriz S; Gautier A
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17917-17923. PubMed ID: 32568417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent probes for super-resolution imaging in living cells.
    Fernández-Suárez M; Ting AY
    Nat Rev Mol Cell Biol; 2008 Dec; 9(12):929-43. PubMed ID: 19002208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering of Tunable Allosteric-like Fluorogenic Protein Sensors.
    Broch F; El Hajji L; Pietrancosta N; Gautier A
    ACS Sens; 2023 Oct; 8(10):3933-3942. PubMed ID: 37830919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bright future of single-molecule fluorescence imaging.
    Juette MF; Terry DS; Wasserman MR; Zhou Z; Altman RB; Zheng Q; Blanchard SC
    Curr Opin Chem Biol; 2014 Jun; 20():103-11. PubMed ID: 24956235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment.
    Mitchell JA; Zhang WH; Herde MK; Henneberger C; Janovjak H; O'Mara ML; Jackson CJ
    Methods Mol Biol; 2017; 1596():89-99. PubMed ID: 28293882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral confocal imaging of fluorescently tagged nicotinic receptors in knock-in mice with chronic nicotine administration.
    Renda A; Nashmi R
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22349092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolating and Engineering Fluorescence-Activating Proteins Using Yeast Surface Display.
    El Hajji L; Benaissa H; Gautier A
    Methods Mol Biol; 2022; 2491():593-626. PubMed ID: 35482206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a unique family of two-photon full-color-tunable fluorescent materials for imaging in live subcellular organelles, cells, and tissues.
    Chen H; Tang Y; Shang H; Kong X; Guo R; Lin W
    J Mater Chem B; 2017 Apr; 5(13):2436-2444. PubMed ID: 32264551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications.
    Ai HW; Baird MA; Shen Y; Davidson MW; Campbell RE
    Nat Protoc; 2014 Apr; 9(4):910-28. PubMed ID: 24651502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.
    Hochreiter B; Garcia AP; Schmid JA
    Sensors (Basel); 2015 Oct; 15(10):26281-314. PubMed ID: 26501285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-Infrared Fluorescent Proteins and Their Applications.
    Karasev MM; Stepanenko OV; Rumyantsev KA; Turoverov KK; Verkhusha VV
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S32-S50. PubMed ID: 31213194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orthogonal fluorescent chemogenetic reporters for multicolor imaging.
    Tebo AG; Moeyaert B; Thauvin M; Carlon-Andres I; Böken D; Volovitch M; Padilla-Parra S; Dedecker P; Vriz S; Gautier A
    Nat Chem Biol; 2021 Jan; 17(1):30-38. PubMed ID: 32778846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blue fluorescent cGMP sensor for multiparameter fluorescence imaging.
    Niino Y; Hotta K; Oka K
    PLoS One; 2010 Feb; 5(2):e9164. PubMed ID: 20161796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A tunable FRET circuit for engineering fluorescent biosensors.
    Allen MD; Zhang J
    Angew Chem Int Ed Engl; 2008; 47(3):500-2. PubMed ID: 18058965
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.