These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34848847)

  • 1. Correction to: Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks.
    Coskun ÖK; Vuillemin A; Schubotz F; Klein F; Sichel SE; Eisenreich W; Orsi WD
    ISME J; 2022 Mar; 16(3):900. PubMed ID: 34848847
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks.
    Coskun ÖK; Vuillemin A; Schubotz F; Klein F; Sichel SE; Eisenreich W; Orsi WD
    ISME J; 2022 Jan; 16(1):257-271. PubMed ID: 34312482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water.
    McCollom TM; Donaldson C
    Astrobiology; 2016 Jun; 16(6):389-406. PubMed ID: 27267306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.
    Perner M; Hansen M; Seifert R; Strauss H; Koschinsky A; Petersen S
    Geobiology; 2013 Jul; 11(4):340-55. PubMed ID: 23647923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium:rubidium ratio in ultramafic rocks: differentiation history of the upper mantle.
    Stueber AM; Murthy VR
    Science; 1966 Aug; 153(3737):740-1. PubMed ID: 17791130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.
    McCollom TM
    Astrobiology; 2007 Dec; 7(6):933-50. PubMed ID: 18163871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.
    Daae FL; Økland I; Dahle H; Jørgensen SL; Thorseth IH; Pedersen RB
    Geobiology; 2013 Jul; 11(4):318-39. PubMed ID: 23551703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: a case study of the Dumont Nickel Project, Amos, Québec.
    Kandji EH; Plante B; Bussière B; Beaudoin G; Dupont PP
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11734-11751. PubMed ID: 28337624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents: a hypothesis.
    Holm NG; Dumont M; Ivarsson M; Konn C
    Geochem Trans; 2006 Jul; 7():7. PubMed ID: 16867193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some Compositional and Kinetic Controls on the Bioenergetic Landscapes in Oceanic Basement.
    Bach W
    Front Microbiol; 2016; 7():107. PubMed ID: 26903986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge.
    Perner M; Kuever J; Seifert R; Pape T; Koschinsky A; Schmidt K; Strauss H; Imhoff JF
    FEMS Microbiol Ecol; 2007 Jul; 61(1):97-109. PubMed ID: 17506828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review.
    Kierczak J; Pietranik A; Pędziwiatr A
    Sci Total Environ; 2021 Feb; 755(Pt 1):142620. PubMed ID: 33097274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphur and carbon cycling in the subduction zone mélange.
    Schwarzenbach EM; Caddick MJ; Petroff M; Gill BC; Cooperdock EHG; Barnes JD
    Sci Rep; 2018 Oct; 8(1):15517. PubMed ID: 30341323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.
    Sherwood Lollar B; Voglesonger K; Lin LH; Lacrampe-Couloume G; Telling J; Abrajano TA; Onstott TC; Pratt LM
    Astrobiology; 2007 Dec; 7(6):971-86. PubMed ID: 18163873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise.
    Reveillaud J; Reddington E; McDermott J; Algar C; Meyer JL; Sylva S; Seewald J; German CR; Huber JA
    Environ Microbiol; 2016 Jun; 18(6):1970-87. PubMed ID: 26663423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys.
    Reeves EP; Yoshinaga MY; Pjevac P; Goldenstein NI; Peplies J; Meyerdierks A; Amann R; Bach W; Hinrichs KU
    Environ Microbiol; 2014 Nov; 16(11):3515-32. PubMed ID: 24905086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rare gas isotopes in hawaiian ultramafic nodules and volcanic rocks: constraint on genetic relationships.
    Kaneoka I; Takaoka N
    Science; 1980 Jun; 208(4450):1366-8. PubMed ID: 17775720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abiogenic hydrocarbon production at lost city hydrothermal field.
    Proskurowski G; Lilley MD; Seewald JS; Früh-Green GL; Olson EJ; Lupton JE; Sylva SP; Kelley DS
    Science; 2008 Feb; 319(5863):604-7. PubMed ID: 18239121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Residents of the Atlantis Massif's Shallow Serpentinite Subsurface.
    Motamedi S; Orcutt BN; Früh-Green GL; Twing KI; Pendleton HL; Brazelton WJ
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massive seafloor mounds depict potential for seafloor mineral deposits in the Great South Basin (GSB) offshore New Zealand.
    Olakunle OK; Ajibola LM; Muhammad IH; Makovsky Y
    Sci Rep; 2021 Apr; 11(1):9185. PubMed ID: 33911137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.