These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34849487)

  • 1. Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells.
    Adhikari B; Narain A; Wolf E
    STAR Protoc; 2021 Dec; 2(4):100949. PubMed ID: 34849487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARF-AID: A Rapidly Inducible Protein Degradation System That Preserves Basal Endogenous Protein Levels.
    Sathyan KM; Scott TG; Guertin MJ
    Curr Protoc Mol Biol; 2020 Sep; 132(1):e124. PubMed ID: 32757370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.
    Bosch JA; Knight S; Kanca O; Zirin J; Yang-Zhou D; Hu Y; Rodiger J; Amador G; Bellen HJ; Perrimon N; Mohr SE
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e112. PubMed ID: 31869524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of conditional auxin-inducible degron (AID) cells and tight control of degron-fused proteins using the degradation inhibitor auxinole.
    Yesbolatova A; Natsume T; Hayashi KI; Kanemaki MT
    Methods; 2019 Jul; 164-165():73-80. PubMed ID: 31026591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting endogenous proteins for spatial and temporal knockdown using auxin-inducible degron in Caenorhabditis elegans.
    Kurashina M; Mizumoto K
    STAR Protoc; 2023 Mar; 4(1):102028. PubMed ID: 36640369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines.
    Deleuze V; Soler E; Andrieu-Soler C
    STAR Protoc; 2024 Jun; 5(2):103016. PubMed ID: 38640065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique.
    Tadjuidje E; Cha SW
    Methods Mol Biol; 2018; 1865():105-117. PubMed ID: 30151762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Protein Depletion Using the Auxin-Inducible Degron 2 (AID2) System.
    Saito Y; Kanemaki MT
    Curr Protoc; 2021 Aug; 1(8):e219. PubMed ID: 34370399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating mutant
    Li HH; Li JC; Su MP; Liu KL; Chen CH
    STAR Protoc; 2021 Jun; 2(2):100432. PubMed ID: 33899015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for biallelic tagging of an endogenous gene using CRISPR-Cas9 in human cells.
    Kong N; Chan YW
    STAR Protoc; 2023 May; 4(2):102286. PubMed ID: 37252842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Tagging of AGO1 Using CRISPR/Cas9-Mediated Homologous Recombination.
    Ghosh S; Liu JL
    Methods Mol Biol; 2018; 1680():217-235. PubMed ID: 29030852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection-dependent and Independent Generation of CRISPR/Cas9-mediated Gene Knockouts in Mammalian Cells.
    Sternburg EL; Dias KC; Karginov FV
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology.
    Qiu Y; Ding Q
    STAR Protoc; 2021 Mar; 2(1):100307. PubMed ID: 33554142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells.
    Lambrus BG; Moyer TC; Holland AJ
    Methods Cell Biol; 2018; 144():107-135. PubMed ID: 29804665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells.
    Li S; Wang Y; van der Stoel M; Zhou X; Madhusudan S; Kanerva K; Nguyen VD; Eskici N; Olkkonen VM; Zhou Y; Raivio T; Ikonen E
    Genome Biol; 2024 Feb; 25(1):58. PubMed ID: 38409044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of gene-of-interest double allele knockout clones in primary human T cells by CRISPR.
    Wu L; Tan JC; Gascoigne NRJ
    STAR Protoc; 2023 Sep; 4(3):102445. PubMed ID: 37432856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells.
    Shin SW; Lee JS
    Biotechnol Bioeng; 2020 Jun; 117(6):1895-1903. PubMed ID: 32086804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.