These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 34849575)

  • 1. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions.
    Dhakal A; McKay C; Tanner JJ; Cheng J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational anti-COVID-19 drug design: progress and challenges.
    Wang J; Zhang Y; Nie W; Luo Y; Deng L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening.
    Chandraghatgi R; Ji HF; Rosen GL; Sokhansanj BA
    J Chem Inf Model; 2024 May; 64(9):3826-3840. PubMed ID: 38696451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knowing and combating the enemy: a brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates.
    Serafim MSM; Gertrudes JC; Costa DMA; Oliveira PR; Maltarollo VG; Honorio KM
    Biosci Rep; 2021 Mar; 41(3):. PubMed ID: 33624754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Magnetic Microbead Affinity Selection Screening: Discovery of Natural Ligands to the SARS-CoV-2 Spike Protein.
    Muchiri RN; Kibitel J; Redick MA; van Breemen RB
    J Am Soc Mass Spectrom; 2022 Jan; 33(1):181-188. PubMed ID: 34939787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for Sequence and Structure-Based Protein-Ligand Interaction Prediction.
    Zhang Y; Li S; Meng K; Sun S
    J Chem Inf Model; 2024 Mar; 64(5):1456-1472. PubMed ID: 38385768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning models for drug-target interactions: current knowledge and future directions.
    D'Souza S; Prema KV; Balaji S
    Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design.
    Floresta G; Zagni C; Gentile D; Patamia V; Rescifina A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.
    Kashyap K; Siddiqi MI
    Mol Divers; 2021 Aug; 25(3):1517-1539. PubMed ID: 34282519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases.
    Rifaioglu AS; Atas H; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T
    Brief Bioinform; 2019 Sep; 20(5):1878-1912. PubMed ID: 30084866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.
    Raschka S; Kaufman B
    Methods; 2020 Aug; 180():89-110. PubMed ID: 32645448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19.
    El-Behery H; Attia AF; El-Feshawy N; Torkey H
    Comput Biol Chem; 2021 Aug; 93():107536. PubMed ID: 34271420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Protein Mapping Method for Predicting the Protein Interactions in COVID-19 Disease by Deep Learning.
    Alakus TB; Turkoglu I
    Interdiscip Sci; 2021 Mar; 13(1):44-60. PubMed ID: 33433784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches.
    Agajanian S; Alshahrani M; Bai F; Tao P; Verkhivker GM
    J Chem Inf Model; 2023 Mar; 63(5):1413-1428. PubMed ID: 36827465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2.
    Su X; Hu L; You Z; Hu P; Wang L; Zhao B
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19).
    Nayak SK
    Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2.
    Manavalan B; Basith S; Lee G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34595489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase.
    Freidel MR; Armen RS
    PLoS One; 2021; 16(2):e0246181. PubMed ID: 33596235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network analytics for drug repurposing in COVID-19.
    Siminea N; Popescu V; Sanchez Martin JA; Florea D; Gavril G; Gheorghe AM; Iţcuş C; Kanhaiya K; Pacioglu O; Popa LL; Trandafir R; Tusa MI; Sidoroff M; Păun M; Czeizler E; Păun A; Petre I
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.