These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34849586)

  • 1. sAMP-PFPDeep: Improving accuracy of short antimicrobial peptides prediction using three different sequence encodings and deep neural networks.
    Hussain W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ORI-Deep: improving the accuracy for predicting origin of replication sites by using a blend of features and long short-term memory network.
    Shahid M; Ilyas M; Hussain W; Khan YD
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35048955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance improvement for a 2D convolutional neural network by using SSC encoding on protein-protein interaction tasks.
    Wang Y; Li Z; Zhang Y; Ma Y; Huang Q; Chen X; Dai Z; Zou X
    BMC Bioinformatics; 2021 Apr; 22(1):184. PubMed ID: 33845759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison.
    Anilkumar KK; Manoj VJ; Sagi TM
    Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of N-terminal modifications on the stability of antimicrobial peptide SAMP-A4 analogues against protease degradation.
    Li R; He S; Yin K; Zhang B; Yi Y; Zhang M; Pei N; Huang L
    J Pept Sci; 2021 Oct; 27(10):e3352. PubMed ID: 34028137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning.
    Yan J; Bhadra P; Li A; Sethiya P; Qin L; Tai HK; Wong KH; Siu SWI
    Mol Ther Nucleic Acids; 2020 Jun; 20():882-894. PubMed ID: 32464552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks.
    Cirillo MD; Mirdell R; Sjöberg F; Pham TD
    J Burn Care Res; 2019 Oct; 40(6):857-863. PubMed ID: 31187119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PharmaNet: Pharmaceutical discovery with deep recurrent neural networks.
    Ruiz Puentes P; Valderrama N; González C; Daza L; Muñoz-Camargo C; Cruz JC; Arbeláez P
    PLoS One; 2021; 16(4):e0241728. PubMed ID: 33901196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cACP-DeepGram: Classification of anticancer peptides via deep neural network and skip-gram-based word embedding model.
    Akbar S; Hayat M; Tahir M; Khan S; Alarfaj FK
    Artif Intell Med; 2022 Sep; 131():102349. PubMed ID: 36100346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides.
    Zhou W; Liu Y; Li Y; Kong S; Wang W; Ding B; Han J; Mou C; Gao X; Liu J
    Patterns (N Y); 2023 Mar; 4(3):100702. PubMed ID: 36960450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tongue image quality assessment based on a deep convolutional neural network.
    Jiang T; Hu XJ; Yao XH; Tu LP; Huang JB; Ma XX; Cui J; Wu QF; Xu JT
    BMC Med Inform Decis Mak; 2021 May; 21(1):147. PubMed ID: 33952228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.