These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34849593)

  • 1. Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning.
    Li J; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y
    Bioinformatics; 2022 Jan; 38(4):1110-1117. PubMed ID: 34849593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques.
    Tajimi T; Wakui N; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):527. PubMed ID: 30598072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism.
    Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry.
    Li C; Wang J; Niu Z; Yao J; Zeng X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking cyclic peptides formed by a disulfide bond through a hierarchical strategy.
    Tao H; Zhao X; Zhang K; Lin P; Huang SY
    Bioinformatics; 2022 Sep; 38(17):4109-4116. PubMed ID: 35801933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning of protein sequence design of protein-protein interactions.
    Syrlybaeva R; Strauch EM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36377772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences.
    Lee I; Keum J; Nam H
    PLoS Comput Biol; 2019 Jun; 15(6):e1007129. PubMed ID: 31199797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IDL-PPBopt: A Strategy for Prediction and Optimization of Human Plasma Protein Binding of Compounds via an Interpretable Deep Learning Method.
    Lou C; Yang H; Wang J; Huang M; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2022 Jun; 62(11):2788-2799. PubMed ID: 35607907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of several key factors influencing deep learning-based inter-residue contact prediction.
    Wu T; Hou J; Adhikari B; Cheng J
    Bioinformatics; 2020 Feb; 36(4):1091-1098. PubMed ID: 31504181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepMSPeptide: peptide detectability prediction using deep learning.
    Serrano G; Guruceaga E; Segura V
    Bioinformatics; 2020 Feb; 36(4):1279-1280. PubMed ID: 31529040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting MHC-peptide binding affinity by differential boundary tree.
    Feng P; Zeng J; Ma J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i254-i261. PubMed ID: 34252932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning method for predicting molecular properties and compound-protein interactions.
    Ma J; Zhang R; Li T; Jiang J; Zhao Z; Liu Y; Ma J
    J Mol Graph Model; 2022 Dec; 117():108283. PubMed ID: 35994925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.