These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34849747)

  • 1. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies.
    Perea-García A; Puig S; Peñarrubia L
    J Exp Bot; 2022 Mar; 73(6):1735-1750. PubMed ID: 34849747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications.
    Puig S; Andrés-Colás N; García-Molina A; Peñarrubia L
    Plant Cell Environ; 2007 Mar; 30(3):271-290. PubMed ID: 17263774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.
    Perea-García A; Garcia-Molina A; Andrés-Colás N; Vera-Sirera F; Pérez-Amador MA; Puig S; Peñarrubia L
    Plant Physiol; 2013 May; 162(1):180-94. PubMed ID: 23487432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metals in plant photosynthesis.
    Yruela I
    Metallomics; 2013 Sep; 5(9):1090-109. PubMed ID: 23739807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-ion regulation of gene expression in yeast.
    Winge DR; Jensen LT; Srinivasan C
    Curr Opin Chem Biol; 1998 Apr; 2(2):216-21. PubMed ID: 9667925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation.
    Carrió-Seguí À; Romero P; Curie C; Mari S; Peñarrubia L
    Sci Rep; 2019 Mar; 9(1):4648. PubMed ID: 30874615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of cytosolic FUMARASE2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in Arabidopsis.
    Garcia-Molina A; Lehmann M; Schneider K; Klingl A; Leister D
    Plant J; 2021 May; 106(3):766-784. PubMed ID: 33583065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Old iron, young copper: from Mars to Venus.
    Crichton RR; Pierre JL
    Biometals; 2001 Jun; 14(2):99-112. PubMed ID: 11508852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis.
    Garcia L; Mansilla N; Ocampos N; Pagani MA; Welchen E; Gonzalez DH
    Plant Mol Biol; 2019 Apr; 99(6):621-638. PubMed ID: 30778722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein metalation in a nutshell.
    Osman D; Robinson NJ
    FEBS Lett; 2023 Jan; 597(1):141-150. PubMed ID: 36124565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysosome-related organelles as mediators of metal homeostasis.
    Blaby-Haas CE; Merchant SS
    J Biol Chem; 2014 Oct; 289(41):28129-36. PubMed ID: 25160625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis.
    Wintz H; Fox T; Wu YY; Feng V; Chen W; Chang HS; Zhu T; Vulpe C
    J Biol Chem; 2003 Nov; 278(48):47644-53. PubMed ID: 13129917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metal chelating and chaperoning effects of clioquinol: insights from yeast studies.
    Li C; Wang J; Zhou B
    J Alzheimers Dis; 2010; 21(4):1249-62. PubMed ID: 21504115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions.
    Garcia-Molina A; Andrés-Colás N; Perea-García A; Neumann U; Dodani SC; Huijser P; Peñarrubia L; Puig S
    Plant Cell Physiol; 2013 Aug; 54(8):1378-90. PubMed ID: 23766354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charting the travels of copper in eukaryotes from yeast to mammals.
    Nevitt T; Ohrvik H; Thiele DJ
    Biochim Biophys Acta; 2012 Sep; 1823(9):1580-93. PubMed ID: 22387373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia.
    Levy MA; Tsai YH; Reaume A; Bray TM
    Am J Physiol Lung Cell Mol Physiol; 2001 Jul; 281(1):L172-82. PubMed ID: 11404260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency.
    Romero AM; Martínez-Pastor M; Du G; Solé C; Carlos M; Vergara SV; Sanvisens N; Wohlschlegel JA; Toczyski DP; Posas F; de Nadal E; Martínez-Pastor MT; Thiele DJ; Puig S
    mBio; 2018 Sep; 9(5):. PubMed ID: 30228242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors.
    Finney LA; O'Halloran TV
    Science; 2003 May; 300(5621):931-6. PubMed ID: 12738850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the Arabidopsis tandem zinc-finger C3H15 protein in metal homeostasis.
    Andrés-Bordería A; Mazuque-Pons L; Romeu-Perales M; Garcia-Molina A; Andrés-Colás N; Martínez-Pastor MT; Sanz A; Puig S; Peñarrubia L; Perea-García A
    Plant Physiol Biochem; 2024 Sep; 216():109123. PubMed ID: 39276674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial copper storage proteins.
    Dennison C; David S; Lee J
    J Biol Chem; 2018 Mar; 293(13):4616-4627. PubMed ID: 29414794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.