BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34849839)

  • 1. Evolved Bmp6 enhancer alleles drive spatial shifts in gene expression during tooth development in sticklebacks.
    Stepaniak MD; Square TA; Miller CT
    Genetics; 2021 Dec; 219(4):. PubMed ID: 34849839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intronic enhancer of Bmp6 underlies evolved tooth gain in sticklebacks.
    Cleves PA; Hart JC; Agoglia RM; Jimenez MT; Erickson PA; Gai L; Miller CT
    PLoS Genet; 2018 Jun; 14(6):e1007449. PubMed ID: 29902209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression.
    Erickson PA; Cleves PA; Ellis NA; Schwalbach KT; Hart JC; Miller CT
    Dev Biol; 2015 May; 401(2):310-23. PubMed ID: 25732776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6.
    Cleves PA; Ellis NA; Jimenez MT; Nunez SM; Schluter D; Kingsley DM; Miller CT
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13912-7. PubMed ID: 25205810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks.
    Ellis NA; Glazer AM; Donde NN; Cleves PA; Agoglia RM; Miller CT
    Development; 2015 Jul; 142(14):2442-51. PubMed ID: 26062935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site pleiotropy of a stickleback Bmp6 enhancer.
    Rowley AJ; Square TA; Miller CT
    Dev Biol; 2022 Dec; 492():111-118. PubMed ID: 36198347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Dissection of a Supergene Implicates
    Erickson PA; Baek J; Hart JC; Cleves PA; Miller CT
    Genetics; 2018 Jun; 209(2):591-605. PubMed ID: 29593029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.
    Terekhanova NV; Logacheva MD; Penin AA; Neretina TV; Barmintseva AE; Bazykin GA; Kondrashov AS; Mugue NS
    PLoS Genet; 2014 Oct; 10(10):e1004696. PubMed ID: 25299485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA.
    O'Brown NM; Summers BR; Jones FC; Brady SD; Kingsley DM
    Elife; 2015 Jan; 4():e05290. PubMed ID: 25629660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent evolution of gene expression in two high-toothed stickleback populations.
    Hart JC; Ellis NA; Eisen MB; Miller CT
    PLoS Genet; 2018 Jun; 14(6):e1007443. PubMed ID: 29897962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks.
    Erickson PA; Glazer AM; Cleves PA; Smith AS; Miller CT
    Proc Biol Sci; 2014 Aug; 281(1788):20140822. PubMed ID: 24966315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in
    Roberts Kingman GA; Lee D; Jones FC; Desmet D; Bell MA; Kingsley DM
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34321354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, expression profiling and promoter functional analysis of Bone morphogenetic protein 6 and 7 in tongue sole (Cynoglossus semilaevis).
    Ma Q; Feng W; Zhuang Z; Liu S
    Fish Physiol Biochem; 2017 Apr; 43(2):435-454. PubMed ID: 28013423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.
    Artemov AV; Mugue NS; Rastorguev SM; Zhenilo S; Mazur AM; Tsygankova SV; Boulygina ES; Kaplun D; Nedoluzhko AV; Medvedeva YA; Prokhortchouk EB
    Mol Biol Evol; 2017 Sep; 34(9):2203-2213. PubMed ID: 28873953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback.
    Morris MRJ; Bowles E; Allen BE; Jamniczky HA; Rogers SM
    BMC Evol Biol; 2018 Jul; 18(1):113. PubMed ID: 30021523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development and replacement of the stickleback dentition.
    Ellis NA; Donde NN; Miller CT
    J Morphol; 2016 Aug; 277(8):1072-83. PubMed ID: 27145214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).
    Ferchaud AL; Pedersen SH; Bekkevold D; Jian J; Niu Y; Hansen MM
    BMC Genomics; 2014 Oct; 15(1):867. PubMed ID: 25286752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (Gasterosteus aculeatus).
    Archambeault SL; Durston DJ; Wan A; El-Sabaawi RW; Matthews B; Peichel CL
    Evolution; 2020 Sep; 74(9):2088-2104. PubMed ID: 32537747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic analysis of Dlx regulation in fish tooth development reveals evolutionary retention of enhancer function despite organ loss.
    Jackman WR; Stock DW
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19390-5. PubMed ID: 17146045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.