BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34849878)

  • 1. Genetic analysis argues for a coactivator function for the Saccharomyces cerevisiae Tup1 corepressor.
    Parnell EJ; Parnell TJ; Stillman DJ
    Genetics; 2021 Oct; 219(2):. PubMed ID: 34849878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional repressor Gal80 recruits corepressor complex Cyc8-Tup1 to structural genes of the Saccharomyces cerevisiae GAL regulon.
    Lettow J; Aref R; Schüller HJ
    Curr Genet; 2022 Feb; 68(1):115-124. PubMed ID: 34622331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1.
    Papamichos-Chronakis M; Petrakis T; Ktistaki E; Topalidou I; Tzamarias D
    Mol Cell; 2002 Jun; 9(6):1297-305. PubMed ID: 12086626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein.
    Wong KH; Struhl K
    Genes Dev; 2011 Dec; 25(23):2525-39. PubMed ID: 22156212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters.
    Tzamarias D; Struhl K
    Genes Dev; 1995 Apr; 9(7):821-31. PubMed ID: 7705659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress.
    Kobayashi Y; Inai T; Mizunuma M; Okada I; Shitamukai A; Hirata D; Miyakawa T
    Biochem Biophys Res Commun; 2008 Mar; 368(1):50-5. PubMed ID: 18201562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of the functions of a conserved surface on the corepressor Tup1.
    Green SR; Johnson AD
    Mol Biol Cell; 2005 Jun; 16(6):2605-13. PubMed ID: 15788561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
    Zhang Z; Reese JC
    J Biol Chem; 2004 Sep; 279(38):39240-50. PubMed ID: 15254041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shields up: the Tup1-Cyc8 repressor complex blocks coactivator recruitment.
    Parnell EJ; Stillman DJ
    Genes Dev; 2011 Dec; 25(23):2429-35. PubMed ID: 22156205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene.
    Fleming AB; Beggs S; Church M; Tsukihashi Y; Pennings S
    Biochim Biophys Acta; 2014 Nov; 1839(11):1242-55. PubMed ID: 25106892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.
    Zhang Z; Reese JC
    Mol Cell Biol; 2005 Sep; 25(17):7399-411. PubMed ID: 16107689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.
    Han BK; Emr SD
    J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain.
    Zhang Z; Varanasi U; Trumbly RJ
    Genetics; 2002 Jul; 161(3):957-69. PubMed ID: 12136003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae.
    Green SR; Johnson AD
    Mol Biol Cell; 2004 Sep; 15(9):4191-202. PubMed ID: 15240822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.
    Chen K; Wilson MA; Hirsch C; Watson A; Liang S; Lu Y; Li W; Dent SY
    Genome Res; 2013 Feb; 23(2):312-22. PubMed ID: 23124522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo.
    Kim SJ; Swanson MJ; Qiu H; Govind CK; Hinnebusch AG
    Mol Cell Biol; 2005 Dec; 25(24):11171-83. PubMed ID: 16314536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of tup1 and cyc8 mutants reveals distinct roles for TUP1 and CYC8 and offers new insight into the regulation of gene transcription by the yeast Tup1-Cyc8 complex.
    Lee B; Church M; Hokamp K; Alhussain MM; Bamagoos AA; Fleming AB
    PLoS Genet; 2023 Aug; 19(8):e1010876. PubMed ID: 37566621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme.
    Papamichos-Chronakis M; Conlan RS; Gounalaki N; Copf T; Tzamarias D
    J Biol Chem; 2000 Mar; 275(12):8397-403. PubMed ID: 10722672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1.
    Han BK; Emr SD
    Genes Dev; 2011 May; 25(9):984-95. PubMed ID: 21536737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.