These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34850009)

  • 1. Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection.
    Cheung CY; McNeil MB; Cook GM
    J Antimicrob Chemother; 2022 Feb; 77(3):615-619. PubMed ID: 34850009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in
    McNeil MB; Cook GM
    Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31160289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival.
    Silveiro C; Marques M; Olivença F; Pires D; Mortinho D; Nunes A; Pimentel M; Anes E; Catalão MJ
    Front Cell Infect Microbiol; 2023; 13():1089911. PubMed ID: 37009497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform.
    Rock JM; Hopkins FF; Chavez A; Diallo M; Chase MR; Gerrick ER; Pritchard JR; Church GM; Rubin EJ; Sassetti CM; Schnappinger D; Fortune SM
    Nat Microbiol; 2017 Feb; 2():16274. PubMed ID: 28165460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a mycobacterial CRISPRi platform in Mycobacterium abscessus and demonstration of the essentiality of ftsZ
    Gupta R; Rohde KH
    Tuberculosis (Edinb); 2023 Jan; 138():102292. PubMed ID: 36495774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria.
    Fleck N; Grundner C
    J Biol Chem; 2021 Aug; 297(2):100990. PubMed ID: 34298016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR interference identifies vulnerable cellular pathways with bactericidal phenotypes in Mycobacterium tuberculosis.
    McNeil MB; Keighley LM; Cook JR; Cheung CY; Cook GM
    Mol Microbiol; 2021 Oct; 116(4):1033-1043. PubMed ID: 34346123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR Interference (CRISPRi) for Targeted Gene Silencing in Mycobacteria.
    Wong AI; Rock JM
    Methods Mol Biol; 2021; 2314():343-364. PubMed ID: 34235662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes.
    de Wet TJ; Winkler KR; Mhlanga M; Mizrahi V; Warner DF
    Elife; 2020 Nov; 9():. PubMed ID: 33155979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR Interference Reveals That All-
    Babunovic GH; DeJesus MA; Bosch B; Chase MR; Barbier T; Dickey AK; Bryson BD; Rock JM; Fortune SM
    mBio; 2022 Feb; 13(1):e0368321. PubMed ID: 35038923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illuminating Host-Mycobacterial Interactions with Genome-wide CRISPR Knockout and CRISPRi Screens.
    Lai Y; Babunovic GH; Cui L; Dedon PC; Doench JG; Fortune SM; Lu TK
    Cell Syst; 2020 Sep; 11(3):239-251.e7. PubMed ID: 32970993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene silencing by CRISPR interference in mycobacteria.
    Choudhary E; Thakur P; Pareek M; Agarwal N
    Nat Commun; 2015 Feb; 6():6267. PubMed ID: 25711368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis.
    Huang Q; Luo H; Liu M; Zeng J; Abdalla AE; Duan X; Li Q; Xie J
    Infect Genet Evol; 2016 Jun; 40():295-301. PubMed ID: 26498723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in
    Yan MY; Zheng D; Li SS; Ding XY; Wang CL; Guo XP; Zhan L; Jin Q; Yang J; Sun YC
    Sci Adv; 2022 Nov; 8(47):eadd5907. PubMed ID: 36417506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria.
    Zhang Y; Yang J; Bai G
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional Silencing by CRISPRi Reveals the Role of DNA Gyrase in Formation of Drug-Tolerant Persister Population in
    Choudhary E; Sharma R; Kumar Y; Agarwal N
    Front Cell Infect Microbiol; 2019; 9():70. PubMed ID: 30972304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.