These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34850377)
1. Selective production of retinol by engineered Saccharomyces cerevisiae through the expression of retinol dehydrogenase. Lee YG; Kim C; Sun L; Lee TH; Jin YS Biotechnol Bioeng; 2022 Feb; 119(2):399-410. PubMed ID: 34850377 [TBL] [Abstract][Full Text] [Related]
2. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
3. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Zhang GC; Liu JJ; Ding WT Appl Environ Microbiol; 2012 Feb; 78(4):1081-6. PubMed ID: 22156411 [TBL] [Abstract][Full Text] [Related]
4. Vitamin A Production by Engineered Sun L; Kwak S; Jin YS ACS Synth Biol; 2019 Sep; 8(9):2131-2140. PubMed ID: 31374167 [TBL] [Abstract][Full Text] [Related]
5. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Kim S; Hahn JS Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562 [TBL] [Abstract][Full Text] [Related]
6. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. Hou J; Suo F; Wang C; Li X; Shen Y; Bao X BMC Biotechnol; 2014 Feb; 14():13. PubMed ID: 24529074 [TBL] [Abstract][Full Text] [Related]
7. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Kang NK; Lee JW; Ort DR; Jin YS Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209 [TBL] [Abstract][Full Text] [Related]
8. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Lee YG; Jin YS; Cha YL; Seo JH Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640 [TBL] [Abstract][Full Text] [Related]
9. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146 [TBL] [Abstract][Full Text] [Related]
10. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
11. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
12. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Kim JW; Seo SO; Zhang GC; Jin YS; Seo JH Bioresour Technol; 2015 Sep; 191():512-9. PubMed ID: 25769689 [TBL] [Abstract][Full Text] [Related]
13. [Construction of Saccharomyces cerevisiae cell factories for fermentation production of retinol]. Li WH; Yang TT; Li R; Ma XC; Jia SR; Zhang XL; Wang D; Dai ZB Zhongguo Zhong Yao Za Zhi; 2024 Aug; 49(16):4396-4406. PubMed ID: 39307776 [TBL] [Abstract][Full Text] [Related]
14. Selective retinol production by modulating the composition of retinoids from metabolically engineered E. coli. Jang HJ; Ha BK; Zhou J; Ahn J; Yoon SH; Kim SW Biotechnol Bioeng; 2015 Aug; 112(8):1604-12. PubMed ID: 25726762 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
18. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688 [TBL] [Abstract][Full Text] [Related]
19. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Lee JY; Kang CD; Lee SH; Park YK; Cho KM Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674 [TBL] [Abstract][Full Text] [Related]
20. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Bae SJ; Kim S; Hahn JS Sci Rep; 2016 Jun; 6():27667. PubMed ID: 27279026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]