These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34850505)

  • 1. Thermal fogging with disinfectants and antifreezes enables effective industrial disinfection in subzero cold-chain environment.
    Hu Q; Ma P; Wang Y; Huang D; Hong J; Tan Y; Yu Z
    J Appl Microbiol; 2022 Apr; 132(4):2673-2682. PubMed ID: 34850505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective of different industrial disinfection in subzero cold-chain environment.
    Ren Z; Han J; Zhang X; Yan Z; Wei Q
    Sci Rep; 2024 Jun; 14(1):12651. PubMed ID: 38825618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers.
    Schinköthe J; Scheinemann HA; Diederich S; Freese H; Eschbaumer M; Teifke JP; Reiche S
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation kinetics of Geobacillus stearothermophilus spores by a peracetic acid or hydrogen peroxide fog in comparison to the liquid form.
    Hayrapetyan H; Nederhoff L; Vollebregt M; Mastwijk H; Nierop Groot M
    Int J Food Microbiol; 2020 Mar; 316():108418. PubMed ID: 31877424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of Disinfectants Suitable for Inactivating SARS-CoV-2 at Cold-Chain Temperature.
    Wu X; Chen Y; Wang L; Guo X; Cui L; Shen Y; Li F; Sun H; Zhang L; Shen J; Xu Y
    Food Environ Virol; 2022 Mar; 14(1):101-104. PubMed ID: 35084667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test methods for estimating the efficacy of the fast-acting disinfectant peracetic acid on surfaces of personal protective equipment.
    Lemmer K; Howaldt S; Heinrich R; Roder A; Pauli G; Dorner BG; Pauly D; Mielke M; Schwebke I; Grunow R
    J Appl Microbiol; 2017 Nov; 123(5):1168-1183. PubMed ID: 28853204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.
    Park E; Lee C; Bisesi M; Lee J
    J Water Health; 2014 Mar; 12(1):13-23. PubMed ID: 24642428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of automatic cluster flushing on the concentration of Staphylococcus aureus in teat cup liners.
    Skarbye AP; Thomsen PT; Krogh MA; Svennesen L; Østergaard S
    J Dairy Sci; 2020 Jun; 103(6):5431-5439. PubMed ID: 32229116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is Peracetic Acid Fumigation Effective in Public Transportation?
    Kruszewska E; Czupryna P; Pancewicz S; Martonik D; Bukłaha A; Moniuszko-Malinowska A
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Site Assessment of a Cryogenic Disinfectant for the Alpine Environment and Outer Packaging of Frozen Items.
    Shen J; Yang B; Xiao JQ; Li LY; Sun HH; Duan HY; Zhang W; Liang C; Chen L; Li L; Chen YY; Lyu Y; Tang S; Wang J; Zhang LB; Wang L
    Biomed Environ Sci; 2023 Feb; 36(2):174-184. PubMed ID: 36861195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ortho-phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection.
    Walsh SE; Maillard JY; Russell AD
    J Appl Microbiol; 1999 Jun; 86(6):1039-46. PubMed ID: 10389251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Aerosol disinfection of bacterial spores].
    Theilen U; Wilsberg FJ; Böhm R; Strauch D
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Jun; 184(3-4):229-52. PubMed ID: 3116785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Contaminated Surfaces.
    Morris JN; Esseili MA
    Appl Environ Microbiol; 2023 Jul; 89(7):e0062223. PubMed ID: 37347194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peracetic acid-based disinfectant is the most appropriate solution for a biological decontamination procedure of responders and healthcare workers in the field environment.
    Rybka A; Gavel A; Kroupa T; Meloun J; Prazak P; Draessler J; Pavlis O; Kubickova P; Kratzerova L; Pejchal J
    J Appl Microbiol; 2021 Sep; 131(3):1240-1248. PubMed ID: 33590580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes.
    Pironti C; Dell'Annunziata F; Giugliano R; Folliero V; Galdiero M; Ricciardi M; Motta O; Proto A; Franci G
    Sci Total Environ; 2021 Nov; 797():149206. PubMed ID: 34311370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decontamination of common healthcare facility surfaces contaminated with SARS-CoV-2 using peracetic acid dry fogging.
    Cutts T; Kasloff S; Safronetz D; Krishnan J
    J Hosp Infect; 2021 Mar; 109():82-87. PubMed ID: 33417989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanisms of bacteria disinfection by performic acid in wastewater: In comparison with peracetic acid and sodium hypochlorite.
    Ding N; Li Z; Jiang L; Liu H; Zhang Y; Sun Y
    Sci Total Environ; 2023 Jun; 878():162606. PubMed ID: 36906014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures.
    Sudhaus N; Pina-Pérez MC; Martínez A; Klein G
    Foodborne Pathog Dis; 2012 May; 9(5):442-52. PubMed ID: 22506696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on aluminum surfaces under freezing conditions.
    Baker KL; Thomas PR; Karriker LA; Ramirez A; Zhang J; Wang C; Holtkamp DJ
    BMC Vet Res; 2017 Dec; 13(1):372. PubMed ID: 29191202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.
    March JK; Pratt MD; Lowe CW; Cohen MN; Satterfield BA; Schaalje B; O'Neill KL; Robison RA
    Microbiologyopen; 2015 Oct; 4(5):764-73. PubMed ID: 26185111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.