These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34850715)

  • 1. Upgrading of waste stabilization ponds using a low-cost small-scale fine bubble diffused aeration system.
    Vagheei R
    Water Sci Technol; 2021 Nov; 84(10-11):3104-3121. PubMed ID: 34850715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of organic micropollutants in waste stabilisation ponds: A review.
    Gruchlik Y; Linge K; Joll C
    J Environ Manage; 2018 Jan; 206():202-214. PubMed ID: 29073579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.
    Ben-shalom M; Shandalov S; Brenner A; Oron G
    Water Sci Technol; 2014; 69(2):350-7. PubMed ID: 24473305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of waste stabilization ponds on removal of Listeria spp.: a case study of Isfahan, Iran.
    Taherkhani A; Attar HM; Mirzaee SA; Ahmadmoazzam M; Jaafarzadeh N; Hashemi F; Jalali M
    J Water Health; 2018 Aug; 16(4):614-621. PubMed ID: 30067242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional fluorescent spectroscopy analysis for the evaluation of organic matter removal from industrial estate wastewater by stabilization ponds.
    Musikavong C; Wattanachira S; Nakajima F; Furumai H
    Water Sci Technol; 2007; 55(11):201-10. PubMed ID: 17591213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen transfer improvement in MBBR process.
    Collivignarelli MC; AbbĂ  A; Bertanza G
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10727-10737. PubMed ID: 30778935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis.
    Mahapatra S; Samal K; Dash RR
    J Environ Manage; 2022 Apr; 308():114668. PubMed ID: 35152038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced pond system: performance with high rate ponds of different depths and areas.
    Craggs RJ; Davies-Colley RJ; Tanner CC; Sukias JP
    Water Sci Technol; 2003; 48(2):259-67. PubMed ID: 14510219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable energy for the aeration of wastewater ponds.
    Hobus I; Hegemann W
    Water Sci Technol; 2003; 48(2):365-72. PubMed ID: 14510232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.
    Coggins LX; Ghisalberti M; Ghadouani A
    Water Res; 2017 Mar; 110():354-365. PubMed ID: 28062073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterols indicate water quality and wastewater treatment efficiency.
    Reichwaldt ES; Ho WY; Zhou W; Ghadouani A
    Water Res; 2017 Jan; 108():401-411. PubMed ID: 27839832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water treatment plant sludge disposal into stabilization ponds.
    Filho SS; Piveli RP; Cutolo SA; de Oliveira AA
    Water Sci Technol; 2013; 67(5):1017-25. PubMed ID: 23416593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dairy farm wastewater treatment by an advanced pond system.
    Craggs RJ; Tanner CC; Sukias JP; Davies-Colley RJ
    Water Sci Technol; 2003; 48(2):291-7. PubMed ID: 14510223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.
    Ouedraogo FR; Zhang J; Cornejo PK; Zhang Q; Mihelcic JR; Tejada-Martinez AE
    Water Res; 2016 Aug; 99():253-262. PubMed ID: 27176549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds.
    Huang Y; Truelstrup Hansen L; Ragush CM; Jamieson RC
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32881-32893. PubMed ID: 28353112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of 388 full-scale waste stabilization pond systems with seven different configurations.
    Espinosa MF; von Sperling M; Verbyla ME
    Water Sci Technol; 2017 Feb; 75(3-4):916-927. PubMed ID: 28234292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of oxygen transfer efficiency in aerated ponds using liquid-film-assisted approach.
    Zhu H; Imai T; Tani K; Ukita M; Sekine M; Higuchi T; Zhang Z
    Water Sci Technol; 2007; 55(11):183-91. PubMed ID: 17591211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aeration of large-scale municipal wastewater treatment plants: state of the art.
    Rosso D; Stenstrom MK; Larson LE
    Water Sci Technol; 2008; 57(7):973-8. PubMed ID: 18441421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of water hyacinth plants into waste stabilization ponds: a case study of Donnybrook 4 Sewage Ponds in Mabvuku-Tafara, Harare, Zimbabwe.
    Hoko Z; Toto TN
    Environ Monit Assess; 2020 Sep; 192(10):625. PubMed ID: 32897491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring Microbial Populations and Antibiotic Resistance Gene Enrichment Associated with Arctic Waste Stabilization Ponds.
    Gromala M; Neufeld JD; McConkey BJ
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.