BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34851082)

  • 21. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays.
    Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM
    Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon nitride films for the protective functional coating: blood compatibility and biomechanical property study.
    Shi Z; Wang Y; Du C; Huang N; Wang L; Ning C
    J Mech Behav Biomed Mater; 2012 Dec; 16():9-20. PubMed ID: 23137618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microelectrode Array With Transparent ALD TiN Electrodes.
    Ryynänen T; Pelkonen A; Grigoras K; Ylivaara OME; Hyvärinen T; Ahopelto J; Prunnila M; Narkilahti S; Lekkala J
    Front Neurosci; 2019; 13():226. PubMed ID: 30967754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation.
    Wang A; Jung D; Park J; Junek G; Wang H
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):248-252. PubMed ID: 30892229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sonochemically fabricated microelectrode arrays for biosensors. Part III. AC impedimetric study of aerobic and anaerobic response of alcohol oxidase within polyaniline.
    Myler S; Collyer SD; Davis F; Gornall DD; Higson SP
    Biosens Bioelectron; 2005 Oct; 21(4):666-71. PubMed ID: 16202881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent poly(3,4-ethylenedioxythiophene)-based microelectrodes for extracellular recording.
    Flachs D; Köhler T; Thielemann C
    Biointerphases; 2018 Aug; 13(4):041008. PubMed ID: 30081642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radio Frequency Plasma-Enhanced Reactive Magnetron Sputtering Deposition of α-SiN
    Wang Y; Qu H; Wang Y; Dong F; Chen Z; Zheng W
    ACS Omega; 2019 Dec; 4(23):20205-20211. PubMed ID: 31815221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA and protein microarray printing on silicon nitride waveguide surfaces.
    Wu P; Hogrebe P; Grainger DW
    Biosens Bioelectron; 2006 Jan; 21(7):1252-63. PubMed ID: 16002276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements.
    Pettersson M; Tkachenko S; Schmidt S; Berlind T; Jacobson S; Hultman L; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2013 Sep; 25():41-7. PubMed ID: 23726925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings.
    Márton G; Bakos I; Fekete Z; Ulbert I; Pongrácz A
    J Mater Sci Mater Med; 2014 Mar; 25(3):931-40. PubMed ID: 24318022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues.
    Guo L; Meacham KW; Hochman S; DeWeerth SP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2485-94. PubMed ID: 20550983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
    Cogan SF; Ehrlich J; Plante TD; Van Wagenen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y; Chang JC; Wheeler BC; Brewer GJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.