These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34851082)

  • 41. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST).
    Bieberich E; Anthony GE
    Biosens Bioelectron; 2004 Mar; 19(8):923-31. PubMed ID: 15128112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of Specialized Microelectrode Arrays with Local Electroporation Functionality.
    Kauth A; Mildner AK; Hegel L; Wegener J; Ingebrandt S
    Ann Biomed Eng; 2024 Jan; 52(1):12-21. PubMed ID: 37326946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays.
    Jahnke HG; Schmidt S; Frank R; Weigel W; Prönnecke C; Robitzki AA
    Biosens Bioelectron; 2019 Mar; 129():208-215. PubMed ID: 30337105
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-Temperature Atomic Layer Deposited Oxide on Titanium Nitride Electrodes Enables Culture and Physiological Recording of Electrogenic Cells.
    Dollt M; Reh M; Metzger M; Heusel G; Kriebel M; Bucher V; Zeck G
    Front Neurosci; 2020; 14():552876. PubMed ID: 33071735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants.
    Prasad A; Xue QS; Dieme R; Sankar V; Mayrand RC; Nishida T; Streit WJ; Sanchez JC
    Front Neuroeng; 2014; 7():2. PubMed ID: 24550823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thin-film silica sol-gel coatings for neural microelectrodes.
    Pierce AL; Sommakia S; Rickus JL; Otto KJ
    J Neurosci Methods; 2009 May; 180(1):106-10. PubMed ID: 19427536
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parylene-C-Coated indium tin oxide electrodes for the optical- and electrical-impedance characterization of cells.
    Kim S; Cho S
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5830-4. PubMed ID: 22966664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films.
    Frigg A; Boes A; Ren G; Abdo I; Choi DY; Gees S; Mitchell A
    Opt Express; 2019 Dec; 27(26):37795-37805. PubMed ID: 31878554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays.
    Gunalan K; Warren DJ; Perry JD; Normann RA; Clark GA
    J Neurosci Methods; 2009 Apr; 178(2):263-9. PubMed ID: 19150630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Band-type microelectrodes for amperometric immunoassays.
    Lee GY; Chang YW; Ko H; Kang MJ; Pyun JC
    Anal Chim Acta; 2016 Jul; 928():39-48. PubMed ID: 27251855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.
    Medina Benavente JJ; Mogami H; Sakurai T; Sawada K
    PLoS One; 2014; 9(2):e90189. PubMed ID: 24587271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels.
    Esch MB; Kapur S; Irizarry G; Genova V
    Lab Chip; 2003 May; 3(2):121-7. PubMed ID: 15100793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation.
    Zhang Z; Luo Y; Nie X; Yu D; Xing X
    Analyst; 2020 Aug; 145(16):5603-5614. PubMed ID: 32776070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PDMS-based conformable microelectrode arrays with selectable novel 3-D microelectrode geometries for surface stimulation and recording.
    Guo L; Deweerth SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1623-6. PubMed ID: 19964009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.