These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Wen F; Li C Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic Systems for CO Kumagai H; Tamaki Y; Ishitani O Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207 [TBL] [Abstract][Full Text] [Related]
5. Metal-Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO Maeda K Adv Mater; 2019 Jun; 31(25):e1808205. PubMed ID: 31066136 [TBL] [Abstract][Full Text] [Related]
6. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
7. Organic Semiconductor-BiVO Yeung CWS; Andrei V; Lee TH; Durrant JR; Reisner E Adv Mater; 2024 Aug; 36(35):e2404110. PubMed ID: 38943473 [TBL] [Abstract][Full Text] [Related]
8. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Liu C; Gallagher JJ; Sakimoto KK; Nichols EM; Chang CJ; Chang MC; Yang P Nano Lett; 2015 May; 15(5):3634-9. PubMed ID: 25848808 [TBL] [Abstract][Full Text] [Related]
9. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Dogutan DK; Nocera DG Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438 [TBL] [Abstract][Full Text] [Related]
10. Hybrid bioinorganic approach to solar-to-chemical conversion. Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947 [TBL] [Abstract][Full Text] [Related]
11. Toward Solar-Driven Photocatalytic CO2 Reduction Using Water as an Electron Donor. Sato S; Arai T; Morikawa T Inorg Chem; 2015 Jun; 54(11):5105-13. PubMed ID: 25679545 [TBL] [Abstract][Full Text] [Related]
12. Inorganometallic Photocatalyst for CO Son HJ; Pac C; Kang SO Acc Chem Res; 2021 Dec; 54(24):4530-4544. PubMed ID: 34881862 [TBL] [Abstract][Full Text] [Related]
14. Solar Panel Technologies for Light-to-Chemical Conversion. Andrei V; Wang Q; Uekert T; Bhattacharjee S; Reisner E Acc Chem Res; 2022 Dec; 55(23):3376-3386. PubMed ID: 36395337 [TBL] [Abstract][Full Text] [Related]
15. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
16. Solar-driven water-splitting provides a solution to the energy problem underpinning climate change. Barber J Biochem Soc Trans; 2020 Dec; 48(6):2865-2874. PubMed ID: 33242067 [TBL] [Abstract][Full Text] [Related]
17. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Wang W; Chen J; Li C; Tian W Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942 [TBL] [Abstract][Full Text] [Related]
20. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO Fujita E; Grills DC; Manbeck GF; Polyansky DE Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]