These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34851101)

  • 1. Highly Efficient Magnetic Propulsion of NiFe Nanorod-Based Miniature Swimmers in Three Dimensions.
    Liu M; Zhang G; Feng Y; Kuai Y; Chen K; Cong J; Piao HG; Liu Y; Pan L
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58898-58907. PubMed ID: 34851101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of a magnetically rotated micro swimmer inspired by paramecium metachronal wave.
    Nematollahisarvestani A; Shamloo A
    Prog Biophys Mol Biol; 2019 Mar; 142():32-42. PubMed ID: 30096335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Miniature Robotic Swimmers with Upstream Motility.
    Wang Y; Chen H; Law J; Du X; Yu J
    Cyborg Bionic Syst; 2023; 4():0015. PubMed ID: 36939416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
    Yu S; Ma N; Yu H; Sun H; Chang X; Wu Z; Deng J; Zhao S; Wang W; Zhang G; Zhang W; Zhao Q; Li T
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31771115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-programmable magnetic soft matter.
    Lum GZ; Ye Z; Dong X; Marvi H; Erin O; Hu W; Sitti M
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6007-E6015. PubMed ID: 27671658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound.
    McNeill JM; Nama N; Braxton JM; Mallouk TE
    ACS Nano; 2020 Jun; 14(6):7520-7528. PubMed ID: 32432850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propulsion of an elastic filament in a shear-thinning fluid.
    Qin K; Peng Z; Chen Y; Nganguia H; Zhu L; Pak OS
    Soft Matter; 2021 Apr; 17(14):3829-3839. PubMed ID: 33885447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helical micro-swimmer: hierarchical tail design and propulsive motility.
    Zhang ZY; Wang YF; Kang JT; Qiu XH; Wang CG
    Soft Matter; 2022 Aug; 18(33):6148-6156. PubMed ID: 35968815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced-order model for inertial locomotion of a slender swimmer.
    Mahalinkam R; Gong F; Khair AS
    Phys Rev E; 2018 Apr; 97(4-1):043102. PubMed ID: 29758634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface swimmers, harnessing the interface to self-propel.
    Grosjean G; Hubert M; Collard Y; Pillitteri S; Vandewalle N
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):137. PubMed ID: 30467607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotion of Miniature Soft Robots.
    Ng CSX; Tan MWM; Xu C; Yang Z; Lee PS; Lum GZ
    Adv Mater; 2021 May; 33(19):e2003558. PubMed ID: 33338296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable multifunctional ferrofluid droplet robots.
    Fan X; Dong X; Karacakol AC; Xie H; Sitti M
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27916-27926. PubMed ID: 33106419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Jet Nanomotors in Remote Controllable Self-Propulsion Swimmers in Pure Water.
    Akhavan O; Saadati M; Jannesari M
    Nano Lett; 2016 Sep; 16(9):5619-30. PubMed ID: 27483134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Swimming Performance by Optimizing Structure of Helical Swimmers.
    Miao J; Li X; Liang B; Wang J; Xu X
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swimmers Heal on the Move Following Catastrophic Damage.
    Karshalev E; Silva-Lopez C; Chan K; Yan J; Sandraz E; Gallot M; Nourhani A; Garay J; Wang J
    Nano Lett; 2021 Mar; 21(5):2240-2247. PubMed ID: 33617270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of groups of magnetically driven artificial microswimmers.
    Buzhardt J; Tallapragada P
    Phys Rev E; 2019 Sep; 100(3-1):033106. PubMed ID: 31640057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
    Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T
    Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.