These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34851499)

  • 1. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography.
    Yasaka K; Akai H; Sugawara H; Tajima T; Akahane M; Yoshioka N; Kabasawa H; Miyo R; Ohtomo K; Abe O; Kiryu S
    Jpn J Radiol; 2022 May; 40(5):476-483. PubMed ID: 34851499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
    Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T
    Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 6. A preliminary study of super-resolution deep learning reconstruction with cardiac option for evaluation of endovascular-treated intracranial aneurysms.
    Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM; Kim JW
    Br J Radiol; 2024 Aug; 97(1160):1492-1500. PubMed ID: 38917414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses.
    Hosoi R; Yasaka K; Mizuki M; Yamaguchi H; Miyo R; Hamada A; Abe O
    Jpn J Radiol; 2023 Aug; 41(8):863-871. PubMed ID: 36862290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing High-Resolution MR Angiography: The Synergistic Effects of 3D Wheel Sampling and Deep Learning-Based Reconstruction.
    Sasaki G; Uetani H; Nakaura T; Nakahara K; Morita K; Nagayama Y; Kidoh M; Iwashita K; Yoshida N; Hokamura M; Yamashita Y; Nakajima M; Ueda M; Hirai T
    J Comput Assist Tomogr; 2024 Sep-Oct 01; 48(5):819-825. PubMed ID: 38346820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis.
    Su T; Zhang Z; Chen Y; Wang Y; Li Y; Xu M; Wang J; Li J; Tian X; Jin Z
    Korean J Radiol; 2024 Apr; 25(4):384-394. PubMed ID: 38528696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction.
    Fujita N; Yasaka K; Hatano S; Sakamoto N; Kurokawa R; Abe O
    Neuroradiology; 2024 Jul; 66(7):1105-1112. PubMed ID: 38514472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging.
    Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H
    Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Neuroradiology; 2022 Oct; 64(10):2077-2083. PubMed ID: 35918450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method.
    Sun J; Xu S; Guo Y; Ding J; Zhuo Z; Zhou D; Liu Y
    Acta Radiol; 2024 Oct; 65(10):1257-1264. PubMed ID: 39219486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based image restoration algorithm for coronary CT angiography.
    Tatsugami F; Higaki T; Nakamura Y; Yu Z; Zhou J; Lu Y; Fujioka C; Kitagawa T; Kihara Y; Iida M; Awai K
    Eur Radiol; 2019 Oct; 29(10):5322-5329. PubMed ID: 30963270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study.
    Akai H; Yasaka K; Sugawara H; Tajima T; Kamitani M; Furuta T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S
    BMC Med Imaging; 2023 Jan; 23(1):5. PubMed ID: 36624404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.
    Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K
    Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.