These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 34851499)
21. LAVA HyperSense and deep-learning reconstruction for near-isotropic (3D) enhanced magnetic resonance enterography in patients with Crohn's disease: utility in noise reduction and image quality improvement. Son JH; Lee Y; Lee HJ; Lee J; Kim H; Lebel MR Diagn Interv Radiol; 2023 May; 29(3):437-449. PubMed ID: 37098650 [TBL] [Abstract][Full Text] [Related]
22. Deep Learning Reconstruction Plus Single-Energy Metal Artifact Reduction for Supra Hyoid Neck CT in Patients With Dental Metals. Mizuki M; Yasaka K; Miyo R; Ohtake Y; Hamada A; Hosoi R; Abe O Can Assoc Radiol J; 2024 Feb; 75(1):74-81. PubMed ID: 37387607 [No Abstract] [Full Text] [Related]
23. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value. Chen Q; Fang S; Yuchen Y; Li R; Deng R; Chen Y; Ma D; Lin H; Yan F Eur J Radiol; 2023 Nov; 168():111149. PubMed ID: 37862927 [TBL] [Abstract][Full Text] [Related]
24. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland. Sato Y; Ohkuma K Radiol Phys Technol; 2024 Sep; 17(3):756-764. PubMed ID: 38850389 [TBL] [Abstract][Full Text] [Related]
25. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality. Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181 [TBL] [Abstract][Full Text] [Related]
26. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle. Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075 [TBL] [Abstract][Full Text] [Related]
27. Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization. Tanahashi Y; Kubota K; Nomura T; Ikeda T; Kutsuna M; Funayama S; Kobayashi T; Ozaki K; Ichikawa S; Goshima S Jpn J Radiol; 2024 Nov; 42(11):1243-1254. PubMed ID: 38888853 [TBL] [Abstract][Full Text] [Related]
28. Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method. Uetani H; Nakaura T; Kitajima M; Morita K; Haraoka K; Shinojima N; Tateishi M; Inoue T; Sasao A; Mukasa A; Azuma M; Ikeda O; Yamashita Y; Hirai T Eur Radiol; 2022 Jul; 32(7):4527-4536. PubMed ID: 35169896 [TBL] [Abstract][Full Text] [Related]
29. Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine. Yokota Y; Takeda C; Kidoh M; Oda S; Aoki R; Ito K; Morita K; Haraoka K; Yamashita Y; Iizuka H; Kato S; Tsujita K; Ikeda O; Yamashita Y; Utsunomiya D Can Assoc Radiol J; 2021 Feb; 72(1):120-127. PubMed ID: 32070116 [TBL] [Abstract][Full Text] [Related]
30. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol. Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725 [TBL] [Abstract][Full Text] [Related]
31. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T. Ueda T; Yamamoto K; Yazawa N; Tozawa I; Ikedo M; Yui M; Nagata H; Nomura M; Ozawa Y; Ohno Y Eur Radiol Exp; 2024 Sep; 8(1):103. PubMed ID: 39254920 [TBL] [Abstract][Full Text] [Related]
32. Assessment of Image Quality of Coronary CT Angiography Using Deep Learning-Based CT Reconstruction: Phantom and Patient Studies. Jeon PH; Jeon SH; Ko D; An G; Shim H; Otgonbaatar C; Son K; Kim D; Ko SM; Chung MA Diagnostics (Basel); 2023 May; 13(11):. PubMed ID: 37296714 [TBL] [Abstract][Full Text] [Related]
33. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans. Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603 [TBL] [Abstract][Full Text] [Related]
34. Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images. Matsuo K; Nakaura T; Morita K; Uetani H; Nagayama Y; Kidoh M; Hokamura M; Yamashita Y; Shinoda K; Ueda M; Mukasa A; Hirai T Neuroradiology; 2023 Nov; 65(11):1619-1629. PubMed ID: 37673835 [TBL] [Abstract][Full Text] [Related]
35. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality. Brain ME; Amukotuwa S; Bammer R J Med Imaging Radiat Oncol; 2024 Jun; 68(4):377-384. PubMed ID: 38577926 [TBL] [Abstract][Full Text] [Related]
36. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy. Park JC; Park KJ; Park MY; Kim MH; Kim JK J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449 [TBL] [Abstract][Full Text] [Related]
37. Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study. Akai H; Yasaka K; Sugawara H; Tajima T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S Magn Reson Med Sci; 2023 Jul; 22(3):353-360. PubMed ID: 35811127 [TBL] [Abstract][Full Text] [Related]
38. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN. Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136 [TBL] [Abstract][Full Text] [Related]
39. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction. Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950 [No Abstract] [Full Text] [Related]
40. Qualitative and quantitative analysis of routinely postprocessed (CLEAR) CE-MRA data sets: are SNR and CNR calculations reliable? Buerke B; Allkemper T; Kugel H; Bremer C; Evers S; Kooijman H; Heindel W; Tombach B Acad Radiol; 2008 Sep; 15(9):1111-7. PubMed ID: 18692751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]