These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34851622)

  • 21. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers.
    Cui T; Zhu Z; Cheng R; Tong YL; Peng G; Wang CF; Chen S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30785-30793. PubMed ID: 30113800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Controlled Mass-Transfer and Buckling for Easy Fabrication of Polymeric Helical Fibers.
    Zhu A; Guo M
    Macromol Rapid Commun; 2016 Mar; 37(5):426-32. PubMed ID: 26762293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin.
    Guo J; Yu Y; Zhang D; Zhang H; Zhao Y
    Research (Wash D C); 2021; 2021():7065907. PubMed ID: 33763650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmable Knot Microfibers from Piezoelectric Microfluidics.
    Yang C; Yu Y; Wang X; Shang L; Zhao Y
    Small; 2022 Feb; 18(5):e2104309. PubMed ID: 34825481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.
    He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-Step Microfluidic Fabrication of Bioinspired Microfibers with a Spindle-Knot Structure for Fog Harvest.
    Yang T; Hou L; Fan X; Yan H; Bao F
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13756-13762. PubMed ID: 38466899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Generation of Bioinspired Spindle-knotted Graphene Microfibers for Oil Absorption.
    Wu Z; Wang J; Zhao Z; Yu Y; Shang L; Zhao Y
    Chemphyschem; 2018 Aug; 19(16):1990-1994. PubMed ID: 28929611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene-Based Helical Micromotors Constructed by "Microscale Liquid Rope-Coil Effect" with Microfluidics.
    Dong Y; Wang L; Wang J; Wang S; Wang Y; Jin D; Chen P; Du W; Zhang L; Liu BF
    ACS Nano; 2020 Dec; 14(12):16600-16613. PubMed ID: 33119265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing highly structured polycaprolactone fibers using microfluidics.
    Sharifi F; Kurteshi D; Hashemi N
    J Mech Behav Biomed Mater; 2016 Aug; 61():530-540. PubMed ID: 27136089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.
    Boyd DA; Shields AR; Howell PB; Ligler FS
    Lab Chip; 2013 Aug; 13(15):3105-10. PubMed ID: 23756632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications.
    Magnani JS; Montazami R; Hashemi NN
    Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):185-205. PubMed ID: 33940929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics.
    Yu Y; Guo J; Ma B; Zhang D; Zhao Y
    Sci Bull (Beijing); 2020 Oct; 65(20):1752-1759. PubMed ID: 36659248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel synthetic microfiber with controllable size for cell encapsulation and culture.
    Wu F; Ju XJ; He XH; Jiang MY; Wang W; Liu Z; Xie R; He B; Chu LY
    J Mater Chem B; 2016 Apr; 4(14):2455-2465. PubMed ID: 32263195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics-Based On-Demand Generation of Nonwoven and Single Polymer Microfibers.
    Pullagura BK; Gundabala V
    Langmuir; 2020 Feb; 36(5):1227-1234. PubMed ID: 31957454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics.
    Yu Y; Guo J; Sun L; Zhang X; Zhao Y
    Research (Wash D C); 2019; 2019():6906275. PubMed ID: 31549079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.